分析 通過換元法,令f(t)≤3,利用分段函數(shù)求出t的范圍,即f(x)的范圍,結合分段函數(shù)列出不等式求解即可.
解答 解:不等式f(f(x))≤3,令f(t)≤3,若t≤0,則2-t-1≤3,2-t≤4,解得-2≤t≤0;
若t>0,則-t2+t≤3,t2-t+3≥0,解得t>0,∴t≥-2,
即原不等式等價于$\left\{\begin{array}{l}{{2}^{-x}-1≥-2}\\{x≤0}\end{array}\right.$或$\left\{\begin{array}{l}{-{x}^{2}+x≥-2}\\{x>0}\end{array}\right.$,解得x≤2.
故答案為:(-∞,2].
點評 本題考查分段函數(shù)的應用,換元法以及轉化思想的應用,考查計算能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $e>\sqrt{2}$ | B. | $1<e<\sqrt{3}$ | C. | $e>\sqrt{5}$ | D. | $1<e<\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
x | -1 | 0 | 2 | 4 | 5 |
f(x) | 1 | 4 | 1.5 | 4 | 1 |
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | λ>2 | B. | λ<2 | C. | λ>3 | D. | λ<3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com