15.莖葉圖如圖1,為高三某班60名學(xué)生的化學(xué)考試成績,算法框圖如圖2中輸入的a1為莖葉圖中的學(xué)生成績,則輸出的m,n分別是( 。
A.m=29,n=15B.m=29,n=16C.m=15,n=16D.m=16,n=15

分析 算法的功能是計算學(xué)生在60名學(xué)生的化學(xué)考試成績中,成績大于等于80的人數(shù),和成績小于80且大于等于60的人數(shù),根據(jù)莖葉圖可得.

解答 解:由程序框圖知:算法的功能是計算學(xué)生在60名學(xué)生的化學(xué)考試成績中,成績大于等于80的人數(shù),和成績小于80且大于等于60的人數(shù),
由莖葉圖得,在60名學(xué)生的成績中,成績大于等于80的人數(shù)有80,80,82,84,84,85,86,89,89,89,90,91,96,98,98,98,共1,6人,故n=16,
由莖葉圖得,在60名學(xué)生的成績中,成績小于60的人數(shù)有43,46,47,48,49,50,51,52,53,53,56,58,59,59,59共15人,
則在60名學(xué)生的成績中,成績小于80且大于等于60的人數(shù)有60-16-15=29,故m=29,
故選:B.

點評 本題借助莖葉圖考查了循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程判斷算法的功能是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x+y-5≤0\\ x-2y+1≤0\\ x≥1\end{array}\right.$,若不等式y(tǒng)2-2xy≤ax2恒成立,則實數(shù)a的最小值為( 。
A.8B.3C.-1D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知條件p:log2(x-1)<1的解,q:x2-2x-3<0的解,則p是q的( 。l件.
A.充分非必要B.必要非充分
C.充分必要D.既非充分又非必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.不等式(x+3)(x-2)<0的解集為(-3,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在等差數(shù)列{an}中,Sn為數(shù)列{an}的前n項和,且滿足S9=-9,S10=-5.
(1)求數(shù)列{an}的通項公式;
(2)求Sn,并指出當(dāng)n為何值時,Sn取最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.?dāng)?shù)列{an}滿足a1=$\frac{4}{3}$,an+1-1=an(an-1)(n∈N*),且Sn=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$,則Sn的整數(shù)部分的所有可能值構(gòu)成的集合是( 。
A.{0,1,2}B.{0,1,2,3}C.{1,2}D.{0,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若集合A={-1,2},B={0,1},則集合{z|z=x+y,x∈A,y∈B}中的元素的個數(shù)為( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)M{a,b,c}=$\left\{\begin{array}{l}{a,b,c的中位數(shù),(a-b)(b-c)(c-a)≠0}\\{a,b,c的眾數(shù),(a-b)(b-c)(c-a)=0}\end{array}\right.$,若f(x)=M{2x,x2,4-7.5x}(x>0),則f(x)的最小值是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某興趣小組在網(wǎng)上看見一則消息稱哈爾濱工業(yè)大學(xué)男女比例近似滿足4:1,由于哈工大的專業(yè)偏向理科,該小組猜想高中生的文理科選修與性別有關(guān).為了判斷高中生的文理科選修是否與性別有關(guān),該小組隨機調(diào)查了100名學(xué)生的情況,得到如下圖所示的2×2列聯(lián)表
理科文科合計
30
3545
合計60
(1)請補全該2×2列聯(lián)表.
(2)試通過計算說明,能否有99%的把握認(rèn)為高中生的文理科選修是與性別有關(guān).
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)},其中n=({a+b+c+d})$
P(K2≥k00.500.400.250.150.100.050.0250.0100.005
K00.4450.7081.3232.0722.7063.8415.0246.6357.879

查看答案和解析>>

同步練習(xí)冊答案