數(shù)列{an}的前n項和記為Sn,a1=1,an+1=2Sn+1(n≥1).
(Ⅰ)求a2,a3的值;
(Ⅱ)證明數(shù)列{an}是等比數(shù)列,寫出數(shù)列{an}的通項公式;
(Ⅲ)求數(shù)列{nan}的前n項和Tn
(Ⅰ)∵{an}的前n項和為Sn,a1=1,an+1=2Sn+1(n≥1);
∴a2=2s1+1=2a1+1=2×1+1=3,
∴s2=a1+a2=1+3=4,
∴a3=2s2+1=2×4+1=9.
(Ⅱ)∵an+1=2Sn+1①,
∴an=2Sn-1+1②,
①-②得:an+1-an=2(Sn-Sn-1)=2an
an+1
an
=3
,
∴數(shù)列{an}是公比為q=3的等比數(shù)列;
∴通項公式an=1×3n-1=3n-1
(Ⅲ)∵an=1×3n-1=3n-1
∴Tn=nan=1•30+2•31+3•32+…+(n-1)•3n-2+n•3n-1
于是,3Tn=1•31+2•32+3•33+…+(n-1)3n-1+n•3n
①-②得:-2Tn=1+3+32+…+3n-1-n•3n=
1×(1-3n)
1-3
-n•3n

∴前n項和Tn=
1
4
[(2n-1)×3n+1]
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

數(shù)列{an}的通項公式為an=(-1)n-1(4n-3),則S100等于______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設數(shù)列{an}的前n項和為Sn,且Sn=4an+2n+1,n∈N*
(1)求證:{an-2}是等比數(shù)列;
(2)求數(shù)列{nan}前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設數(shù)列{an},{bn}都是正項等比數(shù)列,Sn,Tn分別為數(shù)列{lgan}與{lgbn}的前n項和,且
Sn
Tn
=
n
2n+1
,則logb5a5=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在等比數(shù)列{an}中,Sn為{an}的前n項和,且S3=
7
2
,S6=
63
2

(1)求an
(2)求數(shù)列{nan}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設數(shù)列{an}是公差大于零的等差數(shù)列,已知a1=2,a3=a22-10.
(1)求{an}的通項公式;
(2)設數(shù)列{bn}是以函數(shù)f(x)=4sin2πx的最小正周期為首項,以3為公比的等比數(shù)列,求數(shù)列{an•bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知等差數(shù)列前三項為a,4,3a,前n項的和為sn,sk=2550.
(1)求a及k的值;
(2)求
1
s1
+
1
s2
+…+
1
sn

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在數(shù)列1,2,2,3,3,3,4,4,4,4, 中,第25項為       。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

記數(shù)列{an}的前n項和為Sn,且Sn=2(an-1),則a2=(  )
A.4B.2C.1D.-2

查看答案和解析>>

同步練習冊答案