11.函數(shù)f(x)=$\sqrt{2x-{x^2}}$的單調(diào)遞增區(qū)間是[0,1].

分析 根據(jù)復合函數(shù)單調(diào)性之間的關系進行求解即可.

解答 解:設t=2x-x2,則y=$\sqrt{t}$為增函數(shù),
由2x-x2≥0,得0≤x≤2,即函數(shù)的定義域為[0,2],
函數(shù)t=2x-x2的對稱軸為x=1,
要求f(x)的單調(diào)遞增區(qū)間,即求函數(shù)t=2x-x2的單調(diào)遞增區(qū)間,
∵t=2x-x2的單調(diào)遞增區(qū)間為[0,1],
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為[0,1],
故答案為:[0,1]

點評 本題主要考查函數(shù)單調(diào)遞增區(qū)間的求解,根據(jù)復合函數(shù)單調(diào)性之間的關系,利用換元法是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.設m,n為兩條不同的直線,α,β,γ為三個不同的平面,則下列命題中為假命題的是( 。
A.若m⊥α,n⊥α,則m∥nB.若α∥β,β⊥γ,則α⊥γC.若m∥n,m⊥α,則n⊥αD.若α⊥γ,β⊥γ,則α∥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.某中學為了了解學生的課外閱讀情況,隨機調(diào)查了50名學生,得到他們在某一天各自課外閱讀所用時間的數(shù)據(jù),結(jié)果用圖的條形圖表示.根據(jù)條形圖可得這50名學生這一天平均每人的課外閱讀時間為0.97小時.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若直線3x+4y+m=0與圓x2+y2-2x+4y+1=0沒有公共點,則實數(shù)m的取值范圍是( 。
A.-5<m<15B.m<-5或m>15C.m<4或m>13D.4<m<13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合P={x|-$\frac{1}{3}$≤x≤3},Q={x|-2<x≤$\frac{1}{3}$}.則集合P∪Q=(  )
A.[-2,3)B.(-2,3]C.$[{-\frac{1}{3},3})$D.$[{-\frac{1}{3},\frac{1}{3}}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知ω>0,在函數(shù)y=2sinωx與y=2cosωx的圖象交點中,距離最短的兩個交點的距離為2$\sqrt{3}$,則ω的值為(  )
A.πB.$\frac{π}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.經(jīng)過點P(0,-1)作直線l,若直線l與連接A(1,-2),B(2,1)的線段總有公共點,則斜率k的取值范圍為(  )
A.[-1,1]B.(-1,1)C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.設集合A={x|-4<x<2},B={x|x<1},則如圖中陰影部分表示的集合為[1,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知方程ax2+x+b=0.
(1)若方程的解集為{1},求實數(shù)a,b的值;
(2)若方程的解集為{1,3},求實數(shù)a,b的值.

查看答案和解析>>

同步練習冊答案