精英家教網 > 高中數學 > 題目詳情
6.已知集合P={x|-$\frac{1}{3}$≤x≤3},Q={x|-2<x≤$\frac{1}{3}$}.則集合P∪Q=(  )
A.[-2,3)B.(-2,3]C.$[{-\frac{1}{3},3})$D.$[{-\frac{1}{3},\frac{1}{3}}]$

分析 由P與Q求出兩集合的并集即可.

解答 解:∵P={x|-$\frac{1}{3}$≤x≤3}=[-$\frac{1}{3}$,3],Q={x|-2<x≤$\frac{1}{3}$}=(-2,$\frac{1}{3}$],
∴P∪Q=(-2,3]
故選B

點評 此題考查了并集及其運算,熟練掌握并集的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

16.函數f(x)=sin($\frac{π}{2}$+x)+cos($\frac{π}{2}$-x),x∈[0,π],當x=$\frac{π}{4}$時,f(x)取到最大值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.若不等式x2+px+q<0的解集是{x|1<x<2}.
(1)求p、q的值;
(2)求不等式$\frac{{{x^2}+px+q}}{{{x^2}-x-6}}$≥0的解集.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.已知集合A={x|-6≤x≤5},B={x|a≤x<2a+4},且B⊆∁RA,則實數a的取值范圍是a≤-4或a>5.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.設f(x)是R上的奇函數,且當x∈[0,+∞)時,f(x)=x(x+$\root{3}{x}$).求:
(1)f(-8);
(2)f(x)在R上的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

11.函數f(x)=$\sqrt{2x-{x^2}}$的單調遞增區(qū)間是[0,1].

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.已知sinα-2cosα=0.
(1)求tan(α+$\frac{π}{4}$)的值;
(2)求$\frac{sin2α}{si{n}^{2}α+sinαcosα-cos2α-1}$的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.函數f(x)=$\left\{\begin{array}{l}\frac{1}{x}(x>0).\\ ln|x|(x<0)\end{array}$的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.已知$\overrightarrow{m}$,$\overrightarrow{n}$為單位向量,其夾角為60°,則|2$\overrightarrow{m}$-$\overrightarrow{n}$|=$\sqrt{3}$.

查看答案和解析>>

同步練習冊答案