分析 (1)若f(x)在x=1時取得極值,則f′(1)=0,根據(jù)已知中函數(shù)的解析式,求出導函數(shù)的解析式,代入即可構造關于a的方程,解方程即可得到答案.
(2)求出導函數(shù)的解析式,解關于導函數(shù)的不等式,即可確定f(x)的單調區(qū)間;
解答 解:(1)f(x)的定義域是(0,+∞),
f′(x)=x-$\frac{a}{x}$,
∵f′(1)=0,解得:a=1;
(2)a=2時,f(x)=$\frac{1}{2}$x2-2lnx,f′(x)=$\frac{{x}^{2}-2}{x}$,
令f′(x)>0,解得:x>$\sqrt{2}$,令f′(x)<0,解得:0<x<$\sqrt{2}$,
∴f(x)在(0,$\sqrt{2}$)遞減,在($\sqrt{2}$,+∞)遞增.
點評 本題考查了曲線的切線方程問題,考查導數(shù)的應用以及函數(shù)的單調性問題,是一道基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[{-\frac{10}{3},\frac{7}{6}}]$ | B. | $({-\frac{10}{3},\frac{7}{6}})$ | C. | $[{\frac{7}{6},+∞})$ | D. | $({-\frac{11}{6},\frac{7}{6}})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(cosA)<f(cosB) | B. | f(sinA)<f(cosB) | C. | f(sinA)>f(cosB) | D. | f(sinA)>f(sinB) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com