【題目】如圖,已知過(guò)點(diǎn)的橢圓的離心率為,左頂點(diǎn)和上頂點(diǎn)分別為A,B.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若P為線段OD延長(zhǎng)線上一點(diǎn),直線PA交橢圓于另一點(diǎn)E,直線PB交橢圓于另一點(diǎn)Q.
①求直線PA與PB的斜率之積;
②判斷直線AB與EQ是否平行?并說(shuō)明理由.
【答案】(1)1.(2) ① .②平行.理由見(jiàn)解析
【解析】
(1)離心率值轉(zhuǎn)化為關(guān)系,再把點(diǎn)坐標(biāo)代入方程,即可求出橢圓標(biāo)準(zhǔn)方程;
(2)①求出方程,設(shè)出點(diǎn)坐標(biāo),可求出直線PA與PB的斜率之積;
②求出直線方程,分別與橢圓方程聯(lián)立,求出兩點(diǎn)坐標(biāo),代入斜率公式,求出直線的斜率,然后再判斷與直線是否平行.
(1)∵橢圓過(guò)點(diǎn)D(,),且離心率為
∴,
∴橢圓的方程為1.
(2)①由(1)知A(﹣2,0),B(0,1),
直線OD方程為y,
點(diǎn)P在直線OD上,設(shè)P(﹣2y0,y0),
kPAkPB.
②設(shè)E(x1,y1),Q(x2,y2),
聯(lián)立直線AP:y與橢圓的方程得,
(2y02﹣2y0+1)x2+4y02x+8y0﹣4=0,
∴﹣2+x1,
∴x1,y1,
聯(lián)立直線BP:y與橢圓的方程得,
,
∴x2,y2,
∴
又因?yàn)?/span>kAB,∴kAB=kEQ,
∴直線AB與EQ是平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某興趣小組在科學(xué)館的帕斯卡三角儀器前進(jìn)行探究實(shí)驗(yàn).如圖所示,每次使一個(gè)實(shí)心小球從帕斯卡三角儀器的頂部入口落下,當(dāng)它在依次碰到每層的菱形擋板時(shí),會(huì)等可能地向左或者向右落下,在最底層的7個(gè)出口處各放置一個(gè)容器接住小球,該小組連續(xù)進(jìn)行200次試驗(yàn),并統(tǒng)計(jì)容器中的小球個(gè)數(shù)得到柱狀圖:
(Ⅰ)用該實(shí)驗(yàn)來(lái)估測(cè)小球落入4號(hào)容器的概率,若估測(cè)結(jié)果的誤差小于,則稱該實(shí)驗(yàn)是成功的.試問(wèn):該興趣小組進(jìn)行的實(shí)驗(yàn)是否成功?(誤差)
(Ⅱ)再取3個(gè)小球進(jìn)行試驗(yàn),設(shè)其中落入4號(hào)容器的小球個(gè)數(shù)為,求的分布列與數(shù)學(xué)期望.(計(jì)算時(shí)采用概率的理論值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,城市缺水問(wèn)題較為突出.某市政府為了節(jié)約用水,市民用水?dāng)M實(shí)行階梯水價(jià).每人月用水量中不超過(guò)立方米的部分按4元/立方米收費(fèi),超出立方米的部分按10元/立方米收費(fèi).從該市隨機(jī)調(diào)查了10 000位居民,獲得了他們某月的用水量數(shù)據(jù),整理得到如下頻率分布直方圖:
(1)如果為整數(shù),那么根據(jù)此次調(diào)查,為使80%以上居民在該月的用水價(jià)格為4元/立方米,至少定為多少?
(2)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替.當(dāng)=3時(shí),試完成該10000位居民該月水費(fèi)的頻率分布表,并估計(jì)該市居民該月的人均水費(fèi).
組號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
分組 | ||||||||
頻率 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的右頂點(diǎn)為A,拋物線的焦點(diǎn)與點(diǎn)A重合.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若直線l過(guò)點(diǎn)A且斜率為雙曲線的離心率,求直線l被拋物線截得的弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,GH是東西方向的公路北側(cè)的邊緣線,某公司準(zhǔn)備在GH上的一點(diǎn)B的正北方向的A處建設(shè)一倉(cāng)庫(kù),設(shè),并在公路北側(cè)建造邊長(zhǎng)為的正方形無(wú)頂中轉(zhuǎn)站CDEF(其中EF在GH上),現(xiàn)從倉(cāng)庫(kù)A向GH和中轉(zhuǎn)站分別修兩條道路AB,AC,已知AB=AC+1,且.
(1)求關(guān)于的函數(shù)解析式,并求出定義域;
(2)如果中轉(zhuǎn)站四堵圍墻造價(jià)為10萬(wàn)元/km,兩條道路造價(jià)為30萬(wàn)元/km,問(wèn):取何值時(shí),該公司建設(shè)中轉(zhuǎn)站圍墻和兩條道路總造價(jià)M最低.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某老師是省級(jí)課題組的成員,主要研究課堂教學(xué)目標(biāo)達(dá)成度,為方便研究,從實(shí)驗(yàn)班中隨機(jī)抽取30次的隨堂測(cè)試成績(jī)進(jìn)行數(shù)據(jù)分析已知學(xué)生甲的30次隨堂測(cè)試成績(jī)?nèi)缦?/span>滿分為100分:
把學(xué)生甲的成績(jī)按,,,,,分成6組,列出頻率分布表,并畫出頻率分布直方圖;
規(guī)定隨堂測(cè)試成績(jī)80分以上含80分為優(yōu)秀,為幫助學(xué)生甲提高成績(jī),選取學(xué)生乙,對(duì)甲與乙的隨堂測(cè)試成績(jī)進(jìn)行對(duì)比分析,甲與乙測(cè)試成績(jī)是否為優(yōu)秀相互獨(dú)立已知甲成績(jī)優(yōu)秀的概率為以頻率估計(jì)概率,乙成績(jī)優(yōu)秀的概率為,若,則此二人適合為學(xué)習(xí)上互幫互助的“對(duì)子”在一次隨堂測(cè)試中,記為兩人中獲得優(yōu)秀的人數(shù),已知,問(wèn)二人是否適合結(jié)為“對(duì)子”?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某化工企業(yè)2018年年底投入100萬(wàn)元,購(gòu)入一套污水處理設(shè)備。該設(shè)備每年的運(yùn)轉(zhuǎn)費(fèi)用是0.5萬(wàn)元,此外,每年都要花費(fèi)一定的維護(hù)費(fèi),第一年的維護(hù)費(fèi)為2萬(wàn)元,由于設(shè)備老化,以后每年的維護(hù)費(fèi)都比上一年增加2萬(wàn)元。設(shè)該企業(yè)使用該設(shè)備年的年平均污水處理費(fèi)用為(單位:萬(wàn)元)
(1)用表示;
(2)當(dāng)該企業(yè)的年平均污水處理費(fèi)用最低時(shí),企業(yè)需重新更換新的污水處理設(shè)備。則該企業(yè)幾年后需要重新更換新的污水處理設(shè)備。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:存在x0∈R,使;命題q:對(duì)任意x∈R,mx2+mx+1>0;若p∨q為真,p∧q為假,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:,過(guò)坐標(biāo)原點(diǎn)的直線交于,兩點(diǎn),點(diǎn)在第一象限,軸,垂足為.連結(jié)并延長(zhǎng)交于點(diǎn).
(1)設(shè)到直線的距離為,求的取值范圍;
(2)求面積的最大值及此時(shí)直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com