【題目】如圖,GH是東西方向的公路北側(cè)的邊緣線,某公司準備在GH上的一點B的正北方向的A處建設一倉庫,設,并在公路北側(cè)建造邊長為的正方形無頂中轉(zhuǎn)站CDEF(其中EF在GH上),現(xiàn)從倉庫A向GH和中轉(zhuǎn)站分別修兩條道路AB,AC,已知AB=AC+1,且.

(1)求關(guān)于的函數(shù)解析式,并求出定義域;

(2)如果中轉(zhuǎn)站四堵圍墻造價為10萬元/km,兩條道路造價為30萬元/km,問:取何值時,該公司建設中轉(zhuǎn)站圍墻和兩條道路總造價M最低.

【答案】(1)函數(shù)定義域是(2)

【解析】試題分析:

(1)利用題意結(jié)合余弦定理可得函數(shù)的解析式,其定義域是.

(2)結(jié)合(1)的結(jié)論求得利潤函數(shù),由均值不等式的結(jié)論即可求得當km時,公司建中轉(zhuǎn)站圍墻和兩條道路最低總造價490萬元.

試題解析:

(1),,所以.

中,,

由余弦定理,得,

,

所以 .

, . 又因為,所以.

所以函數(shù)的定義域是.

(2) .

因為), 所以

.

. 于是

由基本不等式得

當且僅當,即時取等號.

答:當km時,公司建中轉(zhuǎn)站圍墻和兩條道路最低總造價490萬元.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】正方體的棱長為1,分別是棱,的中點,過直線的平面分別與棱交于,設,,給出以下四個命題:

四邊形為平行四邊形;

若四邊形面積,,有最小值;

若四棱錐的體積,,則為常函數(shù);

若多面體的體積,,則為單調(diào)函數(shù).

其中假命題為(

A. B. C.③④ D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某投資商到一開發(fā)區(qū)投資72萬元建起一座蔬菜加工廠,第一年共支出12萬元,以后每年支出增加4萬元,從第一年起每年的蔬菜銷售收入均為50萬元,設表示前年的純利潤總和=前年的總收入年的總支出投資額.

1該廠從第幾年開始盈利?

2若干年后,投資商為開發(fā)新項目,對該廠有兩種處理方案:

當年平均利潤達到最大時,以48萬元出售該廠;

當純利潤總和達到最大時,以16萬元出售該廠,

問哪種方案更合算?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的對稱軸為,.

1)求函數(shù)的最小值及取得最小值時的值;

2)試確定的取值范圍,使至少有一個實根;

3)若,存在實數(shù),對任意,使恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的對稱軸為,.

1)求函數(shù)的最小值及取得最小值時的值;

2)試確定的取值范圍,使至少有一個實根;

3)當時,,對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】水培植物需要一種植物專用營養(yǎng)液.已知每投放)個單位的營養(yǎng)液,它在水中釋放的濃度(克/升)隨著時間(天)變化的函數(shù)關(guān)系式近似為,其中,若多次投放,則某一時刻水中的營養(yǎng)液濃度為每次投放的營養(yǎng)液在相應時刻所釋放的濃度之和,根據(jù)經(jīng)驗,當水中營養(yǎng)液的濃度不低于4(克/升)時,它才能有效.

(1)若只投放一次4個單位的營養(yǎng)液,則有效時間可能達幾天?

(2)若先投放2個單位的營養(yǎng)液,3天后投放個單位的營養(yǎng)液.要使接下來的2天中,營養(yǎng)液能夠持續(xù)有效,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,,側(cè)面是邊長為2的等邊三角形,點的中點,且平面平面

I求異面直線所成角的余弦值;

II若點在線段上移動,是否存在點使平面與平面所成的角為?若存在,指出點的位置,否則說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)俄羅斯新羅西斯克2015517日電 記者吳敏、鄭文達報道:當?shù)貢r間17日,參加中俄海上聯(lián)合-2015()”軍事演習的9艘艦艇抵達地中海預定海域,混編組成海上聯(lián)合集群.接到命令后我軍在港口M要將一件重要物品用小艇送到一艘正在航行的俄軍輪船上,在小艇出發(fā)時,輪船位于港口M北偏西30°且與該港口相距20海里的A處,并正以30海里/小時的航行速度沿正東方向勻速行駛.假設該小艇沿直線方向以v海里/小時的航行速度勻速行駛,經(jīng)過t小時與輪船相遇.

(1)若希望相遇時小艇的航行距離最小,則小艇航行速度的大小應為多少?

(2)為保證小艇在30分鐘內(nèi)(30分鐘)能與輪船相遇,試確定小艇航行速度的最小值并說明你的推理過程;

(3)是否存在v,使得小艇以v海里/小時的航行速度行駛,總能有兩種不同的航行方向與輪船相遇?若存在,試確定v的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了日至日的每天晝夜溫差與實驗室每天每顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫度x

10

11

13

12

8

發(fā)芽數(shù)y

23

25

30

26

16

設農(nóng)科所確定的研究方案是:先從這組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再對被選取的組數(shù)據(jù)進行檢驗

1求選取的組數(shù)據(jù)恰好是不相鄰天數(shù)據(jù)的概率;

2若選取的是日與日的兩組數(shù)據(jù),請根據(jù)日與日的數(shù)據(jù),求關(guān)于的線性回歸方程;

3若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過顆,則認為得到的線性回歸方程是可靠的,試問2中所得的線性回歸方程是否可靠?

注:

查看答案和解析>>

同步練習冊答案