【題目】如圖,四棱錐中,底面為菱形,,,點為的中點.
(1)證明:;
(2)若點為線段的中點,平面平面,求二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】分析:(1)由正三角形的性質(zhì)可得,由等腰三角形的性質(zhì)可得,由線面垂直的判定定理可得平面,從而可得結論;(2)由(1)知,結合面面垂直的性質(zhì)可得,平面,以為坐標原點,分別以,,所在直線為,,軸,建立空間直角坐標系,求出平面的一個法向量取平面的一個法向量,利用空間向量夾角余弦公式可得結果.
詳解:(1)連接,
因為,,所以為正三角形,又點為的中點,所以.
又因為,為的中點,所以.
又,所以平面,又平面,所以.
(2)由(1)知.又平面平面,交線為,所以平面,
以為坐標原點,分別以,,所在直線為,,軸,建立如圖所示的空間直角坐標系,
則,,,,,,
設平面的一個法向量為,
可得得,
由(1)知平面,則取平面的一個法向量,
,故二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】從集合的所有非空子集中,等可能地取出個.
(1)若,求所取子集的元素既有奇數(shù)又有偶數(shù)的概率;
(2)若,記所取子集的元素個數(shù)之差為,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在區(qū)間上的最大值為2.
(1)求函數(shù)的解析式,并求它的對稱中心的坐標;
(2)先將函數(shù)保持橫坐標不變,縱坐標變?yōu)樵瓉淼?/span>()倍,再將圖象向左平移()個單位,得到的函數(shù)為偶函數(shù).若對任意的,總存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的方程為x﹣3y+3=0.
(Ⅰ)若直線l1與l在y軸上的截距相等,且l1的傾斜角是l的傾斜角的兩倍,求直線l1的一般式方程;
(Ⅱ)若直線l2過點(,2),且l2與l垂直求直線l2的斜截式方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線的焦點為,過點作垂直于軸的直線與拋物線交于,兩點,且以線段為直徑的圓過點.
(1)求拋物線的方程;
(2)若直線與拋物線交于,兩點,點為曲線:上的動點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在國慶周年慶典活動中,東城區(qū)教育系統(tǒng)近名師生參與了國慶中心區(qū)合唱、方陣群眾游行、聯(lián)歡晚會及萬只氣球保障等多項重點任務.設是參與國慶中心區(qū)合唱的學校,是參與27方陣群眾游行的學校,是參與國慶聯(lián)歡晚會的學校.請用上述集合之間的運算來表示:①既參與國慶中心區(qū)合唱又參與27方陣群眾游行的學校的集合為_____;②至少參與國慶中心區(qū)合唱與國慶聯(lián)歡晚會中一項的學校的集合為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在D上的函數(shù)f(x)如果滿足:對任意x∈D,存在常數(shù)M≥0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的一個上界.已知函數(shù),.
(1)求函數(shù)f(x)在區(qū)間上的所有上界構成的集合;
(2)若函數(shù)g(x)在[0,+∞)上是以7為上界的有界函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通指數(shù)為,其范圍為,分為五個級別, 暢通; 基本暢通; 輕度擁堵; 中度擁堵; 嚴重擁堵.早高峰時段(),從某市交通指揮中心隨機選取了三環(huán)以內(nèi)的50個交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如圖.
(1)這50個路段為中度擁堵的有多少個?
(2)據(jù)此估計,早高峰三環(huán)以內(nèi)的三個路段至少有一個是嚴重擁堵的概率是多少?
(3)某人上班路上所用時間若暢通時為20分鐘,基本暢通為30分鐘,輕度擁堵為36分鐘,中度擁堵為42分鐘,嚴重擁堵為60分鐘,求此人所用時間的數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com