以極點為原點,極軸為x軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位,圓O1的方程為ρ=4cosθ,圓O2的參數(shù)方程為
x=2cosθ
y=-2+2sinθ
(為參數(shù)),求兩圓的公共弦的長度.
分析:先求出圓O1的方程的直角坐標(biāo)方程,再求出圓O2的參數(shù)方程對應(yīng)的普通方程,利用解方程組求出交點坐標(biāo)式及弦長公式求出公共弦長.
解答:解:由ρ=4cosθ得ρ2=4ρcosθ∴圓O1:x2+y2-4x=0,(1分)
x=2cosθ
y=-2+2sinθ
(θ為參數(shù))消去參數(shù)得圓O2:x2+y2+4y=0(3分)
x2+y2-4x=0
x2+y2+4y=0
解得
x1=0
y1=0
x2=2
y2=-2
兩圓交于點(0,0)和(2,-2)(6分)
兩圓的公共弦的長度為2
2
(7分)
點評:本題考查圓的參數(shù)方程,以及把極坐標(biāo)方程化為普通方程的方法,方程思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,直線l的極坐標(biāo)方程為θ=
π
3
(ρ∈R)
,以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C的參數(shù)方程為
x=2cosα
y=1+cos2α
(α為參數(shù)),求直線l與曲線C的交點P的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•文昌模擬)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線C的極坐標(biāo)方程是ρ=1,以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程
x=1+
t
2
y=2+
3
2
t
(t為參數(shù))

(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)設(shè)曲線C經(jīng)過伸縮變換
x′=3x
y′=y
得到曲線C′,設(shè)曲線C′上任一點為M(x,y),求x+2
3
y
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)在A,B,C,D四小題中只能選做2題,每小題10分,共計20分.請在答題卡指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點,BM的延長線交⊙O于N,過
N點的切線交CA的延長線于P.
(1)求證:PM2=PA•PC;
(2)若⊙O的半徑為2
3
,OA=
3
OM,求MN的長.
B.選修4-2:矩陣與變換
曲線x2+4xy+2y2=1在二階矩陣M=
.
1a
b1
.
的作用下變換為曲線x2-2y2=1,求實數(shù)a,b的值;
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=
2
cos(θ+
π
4
)
,以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1+
4
5
y=-1-
3
5
(t為參數(shù)),求直線l被圓C所截得的弦長.
D.選修4-5:不等式選講
設(shè)a,b,c均為正實數(shù).
(1)若a+b+c=1,求a2+b2+c2的最小值;
(2)求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4;坐標(biāo)系與參數(shù)方程以極點為原點,極軸為x軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位⊙O1的極坐標(biāo)方程為ρ=4cosθ,⊙O2的參數(shù)方程為
x=2cosθ
y=-2+2sinθ
(為參數(shù)),求⊙O1、⊙O2的公共弦的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆吉林長春市高二第二次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

⊙O1和⊙O2的極坐標(biāo)方程分別為,

⑴把⊙O1和⊙O2的極坐標(biāo)方程化為直角坐標(biāo)方程;

⑵求經(jīng)過⊙O1,⊙O2交點的直線的直角坐標(biāo)方程.

【解析】本試題主要是考查了極坐標(biāo)的返程和直角坐標(biāo)方程的轉(zhuǎn)化和簡單的圓冤啊位置關(guān)系的運用

(1)中,借助于公式,,將極坐標(biāo)方程化為普通方程即可。

(2)中,根據(jù)上一問中的圓的方程,然后作差得到交線所在的直線的普通方程。

解:以極點為原點,極軸為x軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.

(I),由.所以

為⊙O1的直角坐標(biāo)方程.

同理為⊙O2的直角坐標(biāo)方程.

(II)解法一:由解得,

即⊙O1,⊙O2交于點(0,0)和(2,-2).過交點的直線的直角坐標(biāo)方程為y=-x.

解法二: 由,兩式相減得-4x-4y=0,即過交點的直線的直角坐標(biāo)方程為y=-x

 

查看答案和解析>>

同步練習(xí)冊答案