9.設(shè)a>0且a≠1,則函數(shù)y=ax-2+3恒過定點(diǎn)(2,4).

分析 根據(jù)指數(shù)函數(shù)過定點(diǎn)的性質(zhì)即可確定定點(diǎn)的坐標(biāo).

解答 解:令x-2=0,解得x=2,此時y=1+3=4.
∴定點(diǎn)坐標(biāo)為(2,4),
故答案為:(2,4).

點(diǎn)評 本題主要考查指數(shù)函數(shù)過定點(diǎn)的性質(zhì),直接讓冪指數(shù)等于即可求出定點(diǎn)的橫坐標(biāo),比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知圓C經(jīng)過點(diǎn)A(3,2)和B(3,6).
(I)求面積最小的圓C的方程;
(Ⅱ)若直線l過定點(diǎn)T(1,0),且與(I)中的圓C相切,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.過點(diǎn)(1,2)、(3,6)的直線的斜率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,AB=2,AC=3,$BC=\sqrt{10}$,則△ABC的面積為(  )
A.$\frac{{\sqrt{6}}}{4}$B.$\sqrt{15}$C.$\frac{{3\sqrt{15}}}{4}$D.$\frac{{3\sqrt{6}}}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若集合A={-$\frac{1}{3}$,$\frac{1}{2}$),B={x|mx=1}且B⊆A,則m的值為( 。
A.2B.-3C.2或-3D.2或-3或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,b=3,c=4,B=30°,則此三角形解的情況是( 。
A.一解B.兩解C.一解或兩解D.無解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知$\vec a,\vec b$是夾角為60°的兩單位向量,向量$\vec c⊥\vec a,\vec c⊥\vec b$,且$|\vec c|=1$,$\vec x=2\vec a-\vec b+\vec c,\vec y=-\vec a+3\vec b-\vec c$,則$cos<\vec x,\vec y>$=$-\frac{{5\sqrt{2}}}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)$f(x)=\sqrt{{x^2}-2x-8}$的定義域?yàn)锳,函數(shù)$g(x)=\frac{1}{{\sqrt{1-|{x-a}|}}}$的定義域?yàn)锽,則使A∩B=∅的實(shí)數(shù)a的取值范圍是(  )
A.{a|-1<a<3}B.{a|-2<a<4}C.{a|-2≤a≤4}D.{a|-1≤a≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若關(guān)于x的不等式x2-(a+1)x+a≤0的解集是[-4,3]的子集,則a的取值范圍是[-4,3].

查看答案和解析>>

同步練習(xí)冊答案