如圖,矩形ABCD內接于由函數(shù)數(shù)學公式圖象圍成的封閉圖形,其中頂點C,D在y=0上,求矩形ABCD面積的最大值.

解:由圖,設A點坐標為,,則,由圖可得,記矩形ABCD的面積為S,易得
,得S=-t3-t2+t
所以S′=-3t2-2t+1=-(3t-1)(t+1),令S'=0,得
因為,所以.S',S隨t的變化情況如下表:
t
S'+0-
S極大值
由上表可知,當,即時,S取得最大值為,所以矩形ABCD面積的最大值為
分析:由圖,設A點坐標為,,則,由圖可得,記矩形ABCD的面積為S,易得S的表達式,利用換元法得到函數(shù)S=-t3-t2+t下面利用導數(shù)工具研究其最值,從而得出矩形ABCD面積的最大值.
點評:本題考查了函數(shù)模型的選擇與應用,主要是幫助學生經歷根據(jù)問題的條件和要求建立函數(shù)的解析式及確定定義域再研究函數(shù)的變化狀態(tài)的思維過程.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,矩形ABCD內接于半徑為r的圓O,點P是圓周上任意一點,求證:PA2+PB2+PC2+PD2=8r2
精英家教網

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,矩形ABCD內接于由函數(shù)y=
x
,y=1-x,y=0
圖象圍成的封閉圖形,其中頂點C,D在y=0上,求矩形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年北京市海淀區(qū)高三查漏補缺數(shù)學試卷(解析版) 題型:解答題

如圖,矩形ABCD內接于由函數(shù)圖象圍成的封閉圖形,其中頂點C,D在y=0上,求矩形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,矩形ABCD內接于半徑為r的圓O,點P是圓周上任意一點,求證:PA2+PB2+PC2+PD2=8r2

查看答案和解析>>

同步練習冊答案