【題目】甲、乙兩名射擊運動員在進行射擊訓練,已知甲命中10環(huán),9環(huán),8環(huán)的概率分別是,,,乙命中10環(huán),9環(huán),8環(huán)的概率分別是,,,任意兩次射擊相互獨立.
(1)求甲運動員兩次射擊命中環(huán)數(shù)之和恰好為18的概率;
(2)現(xiàn)在甲、乙兩人進行射擊比賽,每一輪比賽兩人各射擊1次,環(huán)數(shù)高于對方為勝,環(huán)數(shù)低于對方為負,環(huán)數(shù)相等為平局,規(guī)定連續(xù)勝利兩輪的選手為最終的勝者,比賽結束,求恰好進行3輪射擊后比賽結束的概率
【答案】(1)(2)
【解析】
(1)甲運動員兩次射擊命中環(huán)數(shù)之和恰好為18包含“第一次10環(huán)和第二次8環(huán)”,“第一次8環(huán)第二次10環(huán)”,“第一次9環(huán)和第二次9環(huán)”這三種情況,分別求三種情況概率再求和;
(2)求恰好進行3輪射擊后比賽結束的概率,先確定甲勝利,平局,失敗的概率,恰好進行3輪射擊后比賽結束情形包括兩種:①當甲獲得最終勝利結束3輪比賽時,由第2輪、第3輪甲連續(xù)勝利,第一輪甲沒有獲得勝利,算出其概率P1;②當乙獲得最終勝利結束3輪比賽時,則第2輪、第3輪乙連續(xù)勝利,第1輪乙沒有獲得勝利,其概率P2,兩情形概率之和即為所求.
(1)記X表示甲運動員兩次射擊命中環(huán)數(shù)之和,
則X=18包含“第一次10環(huán)和第二次8環(huán)”,“第一次8環(huán)第二次10環(huán)”,“第一次9環(huán)和第二次9環(huán)”這三種情況,
∴甲運動員兩次射擊命中環(huán)數(shù)之和恰好為18的概率為:
P.
(2)記Ai表示甲在第i輪勝利,Bi表示甲在第i輪平局,i表示甲在第i輪失敗,
∴P(Ai),P(Bi),P(i),
①當甲獲得最終勝利結束3輪比賽時,由第2輪、第3輪甲連續(xù)勝利,第一輪甲沒有獲得勝利,
其概率P1,
②當乙獲得最終勝利結束3輪比賽時,則第2輪、第3輪乙連續(xù)勝利,第1輪乙沒有獲得勝利,
其概率P2,
∴經(jīng)過3輪比賽結束的概率P.
科目:高中數(shù)學 來源: 題型:
【題目】“不忘初心、牢記使命”主題教育活動正在全國開展,某區(qū)政府為統(tǒng)計全區(qū)黨員干部一周參與主題教育活動的時間,從全區(qū)的黨員干部中隨機抽取n名,獲得了他們一周參加主題教育活動的時間(單位:時)的頻率分布直方圖,如圖所示,已知參加主題教育活動的時間在內(nèi)的人數(shù)為92.
(1)估計這些黨員干部一周參與主題教育活動的時間的平均值;
(2)用頻率估計概率,如果計劃對全區(qū)一周參與主題教育活動的時間在內(nèi)的黨員干部給予獎勵,且參與時間在,內(nèi)的分別獲二等獎和一等獎,通過分層抽樣方法從這些獲獎人中隨機抽取5人,再從這5人中任意選取3人,求3人均獲二等獎的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),;
若函數(shù)在上存在零點,求a的取值范圍;
設函數(shù),,當時,若對任意的,總存在,使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】由于受到網(wǎng)絡電商的沖擊,某品牌的洗衣機在線下的銷售受到影響,承受了一定的經(jīng)濟損失,現(xiàn)將地區(qū)200家實體店該品牌洗衣機的月經(jīng)濟損失統(tǒng)計如圖所示.
(1)求的值;
(2)求地區(qū)200家實體店該品牌洗衣機的月經(jīng)濟損失的眾數(shù)以及中位數(shù);
(3)不經(jīng)過計算,直接給出地區(qū)200家實體店經(jīng)濟損失的平均數(shù)與6000的大小關系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是一幅招貼畫的示意圖,其中ABCD是邊長為的正方形,周圍是四個全等的弓形.已知O為正方形的中心,G為AD的中點,點P在直線OG上,弧AD是以P為圓心、PA為半徑的圓的一部分,OG的延長線交弧AD于點H.設弧AD的長為,.
(1)求關于的函數(shù)關系式;
(2)定義比值為招貼畫的優(yōu)美系數(shù),當優(yōu)美系數(shù)最大時,招貼畫最優(yōu)美.證明:當角滿足:時,招貼畫最優(yōu)美.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市計劃在一片空地上建一個集購物、餐飲、娛樂為一體的大型綜合園區(qū),如圖,已知兩個購物廣場的占地都呈正方形,它們的面積分別為13公頃和8公頃;美食城和歡樂大世界的占地也都呈正方形,分別記它們的面積為公頃和公頃;由購物廣場、美食城和歡樂大世界圍成的兩塊公共綠地都呈三角形,分別記它們的面積為公頃和公頃.
(1)設,用關于的函數(shù)表示,并求在區(qū)間上的最大值的近似值(精確到0.001公頃);
(2)如果,并且,試分別求出、、、的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某蛋糕店每天制作生日蛋糕若干個,每個生日蛋糕成本為50元,每個蛋糕的售價為100元,如果當天賣不完,剩余的蛋糕作垃圾處理.現(xiàn)搜集并整理了100天生日蛋糕的日需求量(單位:個),得到如圖所示的柱狀圖.100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率.
(1)若該蛋糕店某一天制作生日蛋糕17個,設當天的需求量為,則當天的利潤(單位:元)是多少?
(2)若蛋糕店一天制作17個生日蛋糕.
①求當天的利潤(單位:元)關于當天需求量的函數(shù)解析式;
②求當天的利潤不低于600圓的概率.
(3)若蛋糕店計劃一天制作16個或17個生日蛋糕,請你以蛋糕店一天利潤的平均值作為決策依據(jù),應該制作16個還是17個生日蛋糕?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com