分析 由給出排列規(guī)律可知,第一列的每個數(shù)為所該數(shù)所在行數(shù)的平方,而第一行的數(shù)則滿足列數(shù)減1的平方再加1.由此能求出上起第20行,左起第21列的數(shù)
解答 解:由給出排列規(guī)律可知,
第一列的每個數(shù)為所該數(shù)所在行數(shù)的平方,
而第一行的數(shù)則滿足列數(shù)減1的平方再加1.
依題意有,左起第21列的第一個數(shù)為202+1,
故按連線規(guī)律可知,
上起第20行,左起第21列的數(shù)應(yīng)為202+20=20×20=420.
故答案為:420
點(diǎn)評 本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時要認(rèn)真審題,仔細(xì)解答.其中分析出數(shù)的排列規(guī)律是解答的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{2}$ | B. | 2 | C. | $\sqrt{6}+\sqrt{2}$ | D. | $\sqrt{6}+\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{7}{16}$ | C. | $\frac{4}{7}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{14}$ | C. | $\sqrt{5}$ | D. | 2$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{10(\sqrt{6}+\sqrt{2})}{3}$nmile/h | B. | $\frac{10(\sqrt{6}-\sqrt{2})}{3}$nmile/h | C. | $\frac{10(\sqrt{6}+\sqrt{3})}{3}$nmile/h | D. | $\frac{10(\sqrt{6}-\sqrt{3})}{3}$nmile/h |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com