A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
分析 利用OA=1,△AOB的面積大于$\frac{1}{4}$,可得$\frac{π}{6}$<∠AOB<$\frac{5π}{6}$,即可求出△AOB的面積大于$\frac{1}{4}$的概率.
解答 解:∵OA=1,△AOB的面積大于$\frac{1}{4}$,
∴$\frac{1}{2}×1×1×sin∠AOB>\frac{1}{4}$,
∴sin∠AOB>$\frac{1}{2}$,
∴$\frac{π}{6}$<∠AOB<$\frac{5π}{6}$,
∴△AOB的面積大于$\frac{1}{4}$的概率為$\frac{2}{3}$.
故選:B.
點(diǎn)評 本題考查△AOB的面積大于$\frac{1}{4}$的概率,確定$\frac{π}{6}$<∠AOB<$\frac{5π}{6}$是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(a2-a+1)<$f(\frac{3}{4})$ | B. | f(a2-a+1)>$f(\frac{3}{4})$ | C. | f(a2-a+1)≤$f(\frac{3}{4})$ | D. | f(a2-a+1)≥$f(\frac{3}{4})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
顧客人數(shù)/商品 | 甲 | 乙 | 丙 | 丁 |
100 | √ | × | √ | √ |
217 | × | √ | × | √ |
200 | √ | √ | √ | × |
300 | √ | × | √ | × |
85 | √ | × | × | × |
98 | × | √ | × | × |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 8 | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{n}^{3}}{3}+\frac{{n}^{2}}{2}+\frac{n}{6}+1+\frac{1}{{2}^{n}}$ | B. | $\frac{{n}^{3}}{3}+\frac{{n}^{2}}{2}+\frac{n}{6}+1$-$\frac{1}{{2}^{n}}$ | ||
C. | $\frac{{n}^{3}}{3}+\frac{{n}^{2}}{2}+\frac{n}{6}+1$+$\frac{1}{{2}^{n-1}}$ | D. | $\frac{{n}^{3}}{3}+\frac{{n}^{2}}{2}+\frac{n}{6}+1$-$\frac{1}{{2}^{n-1}}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com