10.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y≤6\\ x-y≤2\\ x≥0\\ y≥0\end{array}\right.$則z=2x+y的最大值是10.

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}x+y≤6\\ x-y≤2\\ x≥0\\ y≥0\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x-y=2}\\{x+y=6}\end{array}\right.$,解得A(4,2),
化目標(biāo)函數(shù)z=2x+y為y=-2x+z,由圖可知,當(dāng)直線y=-2x+z過A時,
直線在y軸上的截距最大,z有最大值為10.
故答案為:10.

點(diǎn)評 本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在棱臺ABC-FED中,△DEF與△ABC分別是棱長為1與2的正三角形,平面ABC⊥平面BCDE,四邊形BCDE為直角梯形,BC⊥CD,CD=1,N為CE中點(diǎn),$\overrightarrow{AM}=λ\overrightarrow{AF}({λ∈R,λ>0})$.
(Ⅰ)λ為何值時,MN∥平面ABC?
(Ⅱ)在(Ⅰ)的條件下,求直線AN與平面BMN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={0,2,4},B={x|3x-x2≥0},則集合A∩B的子集個數(shù)為(  )
A.2B.3C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖1,在直角梯形ABCD中,AB∥DC,∠BAD=90°,AB=AD=$\frac{1}{2}CD$=1,如圖2,將△ABD沿BD折起來,使平面ABD⊥平面BCD,設(shè)E為AD的中點(diǎn),F(xiàn)為AC上一點(diǎn),O為BD的中點(diǎn).
(Ⅰ)求證:AO⊥平面BCD;
(Ⅱ)若AF=2FC,求三棱錐A-BEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,橢圓與雙曲線有公共焦點(diǎn)F1,F(xiàn)2,它們在第一象限的交點(diǎn)為A,且AF1⊥AF2
∠AF1F2=30°,則橢圓與雙曲線的離心率的之積為( 。
A.2B.$\sqrt{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)點(diǎn)M是x軸上的一個定點(diǎn),其橫坐標(biāo)為a(a∈R),已知當(dāng)a=1時,動圓N過點(diǎn)M且與直線x=-1相切,記動圓N的圓心N的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)當(dāng)a>2時,若直線l與曲線C相切于點(diǎn)P(x0,y0)(y0>0),且l與以定點(diǎn)M為圓心的動圓M也相切,當(dāng)動圓M的面積最小時,證明:M、P兩點(diǎn)的橫坐標(biāo)之差為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.為選拔選手參加“中國謎語大會”,某中學(xué)舉行了一次“謎語大賽”活動.為了了解本次競賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計.按照[50,60),[60,70),[70,80)[80,90),[90,100]的分組作出頻率分布直方圖如同1,并作出樣本分?jǐn)?shù)的莖葉圖如圖2(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).

(Ⅰ)求樣本容量n和頻率分布直方圖中的x,y的值;
(Ⅱ)分?jǐn)?shù)在[90,100]的學(xué)生設(shè)為一等獎,獲獎學(xué)金500元;分?jǐn)?shù)在[80,90)的學(xué)生設(shè)為二等獎,獲獎學(xué)金200元.已知在樣本中,獲一、二等獎的學(xué)生中各有一名男生,則從剩下的女生中任取三人,求獎學(xué)金之和大于600的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.過拋物線y2=2x焦點(diǎn)的直線交拋物線于A,B兩點(diǎn),若AB的中點(diǎn)M到該拋物線準(zhǔn)線的距離為5,則線段AB的長度為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,∠BAC的平分線交BC邊于D,若AB=2,AC=1,則△ABD面積的最大值為( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.1

查看答案和解析>>

同步練習(xí)冊答案