15.設點M是x軸上的一個定點,其橫坐標為a(a∈R),已知當a=1時,動圓N過點M且與直線x=-1相切,記動圓N的圓心N的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)當a>2時,若直線l與曲線C相切于點P(x0,y0)(y0>0),且l與以定點M為圓心的動圓M也相切,當動圓M的面積最小時,證明:M、P兩點的橫坐標之差為定值.

分析 (Ⅰ)通過圓N與直線x=-1相切,推出點N到直線x=-1的距離等于圓N的半徑,說明點N的軌跡為以點M(1,0)為焦點,直線x=-1為準線的拋物線,求出軌跡方程.
(Ⅱ)設直線l的方程為y-y0=k(x-x0),聯(lián)立$\left\{\begin{array}{l}y-{y_0}=k(x-{x_0})\\{y^2}=4x\end{array}\right.$得$\frac{k}{4}{y^2}-y-k{x_0}+{y_0}=0$,利用相切關系,推出k,求解直線l的方程為$4x-2{y_0}y+{y_0}^2=0$.通過動圓M的半徑即為點M(a,0)到直線l的距離$d=\frac{{|4a+{y_0}^2|}}{{\sqrt{16+4{y_0}^2}}}$.
利用動圓M的面積最小時,即d最小,然后求解即可.

解答 解:(Ⅰ)因為圓N與直線x=-1相切,所以點N到直線x=-1的距離等于圓N的半徑,
所以,點N到點M(1,0)的距離與到直線x=-1的距離相等.
所以,點N的軌跡為以點M(1,0)為焦點,直線x=-1為準線的拋物線,
所以圓心N的軌跡方程,即曲線C的方程為y2=4x.
(Ⅱ)由題意,直線l的斜率存在,設直線l的方程為y-y0=k(x-x0),
由$\left\{\begin{array}{l}y-{y_0}=k(x-{x_0})\\{y^2}=4x\end{array}\right.$得$\frac{k}{4}{y^2}-y-k{x_0}+{y_0}=0$,
又${y_0}^2=4{x_0}$,所以$\frac{k}{4}{y^2}-y-\frac{k}{4}{y_0}^2+{y_0}=0$,
因為直線l與曲線C相切,所以$△=1-k(-\frac{k}{4}{y_0}^2+{y_0})=0$,解得$k=\frac{2}{y_0}$.
所以,直線l的方程為$4x-2{y_0}y+{y_0}^2=0$.
動圓M的半徑即為點M(a,0)到直線l的距離$d=\frac{{|4a+{y_0}^2|}}{{\sqrt{16+4{y_0}^2}}}$.
當動圓M的面積最小時,即d最小,而當a>2時;$d=\frac{{|4a+{y_0}^2|}}{{\sqrt{16+4{y_0}^2}}}=\frac{{{y_0}^2+4a}}{{2\sqrt{{y_0}^2+4}}}$=$\frac{{{y_0}^2+4+4a-4}}{{2\sqrt{{y_0}^2+4}}}$=$\frac{{\sqrt{{y_0}^2+4}}}{2}+\frac{4a-4}{{2\sqrt{{y_0}^2+4}}}≥2\sqrt{a-1}$.
當且僅當${y_0}^2=4a-8$,即x0=a-2時取等號,
所以當動圓M的面積最小時,a-x0=2,
即當動圓M的面積最小時,M、P兩點的橫坐標之差為定值.

點評 本題考查軌跡方程的求法,直線與拋物線的位置關系的綜合應用,考查轉化思想以及計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.命題p:?x>2,2x-3>0的否定是(  )
A.?x0>2,${2^{x_0}}-3≤0$B.?x≤2,2x-3>0C.?x>2,2x-3≤0D.?x0>2,${2^{x_0}}-3>0$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若$\int_1^m{(2x-1)dx}=6$(其中m>1),則多項式${({x^2}+\frac{1}{x^2}-2)^m}$展開式的常數(shù)項為-20.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知命題α:如果x<3,那么x<5,命題β:如果x≥3,那么x≥5,則命題α是命題β的( 。
A.否命題B.逆命題C.逆否命題D.否定形式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x+y≤6\\ x-y≤2\\ x≥0\\ y≥0\end{array}\right.$則z=2x+y的最大值是10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在△ABC中,a,b,c分別是角A,B,C所對的邊,若$\frac{cosC}{cosB}=\frac{2a-c}$,則B=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知全集U=R,A={x|x2-2x<0},B={x|x≥1},則A∪(∁UB)=(  )
A.(0,+∞)B.(-∞,1)C.(-∞,2)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD,四邊形ABCD為梯形,AD∥BC,且AD=2BC,Q為BB1的中點,過A1,Q,D三點的平面記為α.
(Ⅰ)證明:平面α與平面A1B1C1D1的交線平行于直線CD;
(Ⅱ)若AA1=3,BC=CD=$\sqrt{3}$,∠BCD=120°,求平面α與底面ABCD所成二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.現(xiàn)有4張卡片,正面分別標有1,2,3,4,背面完全相同.將卡片洗勻,背面向上放置,甲、乙二人輪流抽取卡片,每人每次抽取一張,抽取后不放回,甲先抽.若二人約定,先抽到標有偶數(shù)的卡片者獲勝,則甲獲勝的概率是(  )
A.$\frac{5}{12}$B.$\frac{1}{2}$C.$\frac{7}{12}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習冊答案