已知等差數(shù)列{an}滿足a2=0,a6+a8=-10.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{an•3n-1}的前n項和.
考點:數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由等差數(shù)列的定義聯(lián)立方程組解得首項和公差即得結(jié)論;
(Ⅱ)利用錯位相減法求得數(shù)列的和.
解答: 解:(Ⅰ)由題意得
a1+d=0
2a1+12d=-10
,解得a1=1,d=-1,
∴an=2-n.
(Ⅱ)設(shè)數(shù)列{an•3n-1}的前n項和為sn,即
sn=1•30+0•31+…+(2-n)•3n-1,①
3sn=1•31+0•32+…+(3-n)•3n-1+(2-n)•3n,②
②-①得2sn=-1+3+32+…+3n-1+(2-n)•3n
∴sn=(
5
4
-
n
2
)•3n-
5
4
點評:本題主要考查等差數(shù)列的定義及性質(zhì),數(shù)列的求和方法錯位相減法等知識,考查了學(xué)生的運算求解能力,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某公司為了實現(xiàn)1000萬元利潤的目標(biāo),準(zhǔn)備制定一個激勵銷售人員的獎勵方案:在銷售利潤達到10萬元時,按銷售利潤進行獎勵,且獎金y(單位:萬元)隨銷售利潤(單位:萬元)的增加而增加,但獎金總數(shù)不超過5萬元,同時獎金不超過利潤的25%,現(xiàn)有四個獎勵模型:y=
1
4
x,y=lgx+1,y=(
3
2
x,y=
x
,其中能符合公司要求的模型是( 。
A、y=
1
4
x
B、y=lgx+1
C、y=(
3
2
x
D、y=
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個命題中,
①對分類變量X與Y的隨機變量K2的觀測值k來說,k越小,判斷“X與Y有關(guān)系”的把握越大;
②設(shè)回歸直線方程為
y
=2-2.5x,當(dāng)變量x增加一個單位時,y大約減少2.5個單位;
③已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=0.1;
④命題p:“
x
x-1
≥0”則¬p:“
x
x-1
<0”
其中錯誤命題的個數(shù)是     ( 。
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}為等差數(shù)列,且a3=5,a7=2a4-1.
(Ⅰ)求數(shù)列{an}的通項公式及其前n項和Sn;
(Ⅱ)若數(shù)列{bn}滿足b1+4b2+9b3+…+n2bn=an,設(shè)數(shù)列{bn}的前n項和為Tn,當(dāng)n≥2時,證明Tn
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=
n2+n
2
,等比數(shù)列{bn}滿足b1b2=2b3,且b1,b2+2,b3成等差數(shù)列.
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)設(shè)cn=
an
bn
,Tn為數(shù)列{cn}的前n項和,求Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2013年,首都北京經(jīng)歷了59年來霧霾天氣最多的一個月.經(jīng)氣象局統(tǒng)計,北京市從1月1日至1月30日這30天里有26天出現(xiàn)霧霾天氣.《環(huán)境空氣質(zhì)量指數(shù)(AQI)技術(shù)規(guī)定(試行)》依據(jù)AQI指數(shù)高低把空氣污染級別分為:優(yōu),指數(shù)為0-50;良,指數(shù)為51-100;輕微污染,指數(shù)為101-150;輕度污染,指數(shù)為151-200;中度污染,指數(shù)為201-250;中度重污染,指數(shù)為251-300;重度污染,指數(shù)大于300.下面表1是某氣象觀測點記錄的北京1月1日到1月30日AQI指數(shù)頻數(shù)統(tǒng)計結(jié)果,表2是該觀測點記錄的4天里,AQI指數(shù)M與當(dāng)天的空氣可見度y(千米)的情況,
表1:北京1月1日到1月30日AQI指數(shù)頻數(shù)統(tǒng)計
AQI指數(shù) [0,200] (200,400] (400,600] (600,800] (800,1000]
頻數(shù) 3 6 12 6 3
表2:AQI指數(shù)M與當(dāng)天的空氣水平可見度y(千米)情況
AQI指數(shù)M 900 700 300 100
空氣可見度y(千米) 0.5 3.5 6.5 9.5
(Ⅰ)小王在記錄表1數(shù)據(jù)的觀測點附近開了一家小飯館,飯館生意的好壞受空氣質(zhì)量影響很大.假設(shè)每天空氣質(zhì)量的情況不受前一天影響.經(jīng)小王統(tǒng)計:AQI指數(shù)不高于200時,飯館平均每天凈利潤約700元,AQI指數(shù)在200至400時,飯館平均每天凈利潤約400元,AQI指數(shù)大于400時,飯館每天要凈虧損200元,求小王某一天能夠獲利的概率
(Ⅱ)設(shè)變量x=
M
100
,根據(jù)表2的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(用最小二乘法求線性回歸方程系數(shù)公式b=
n
j=1
xjyj-n
.
x
.
y
n
j=1
xj2-n
.
x
2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,滿足Sn=nan-2n(n-1),a1=1,數(shù)列{bn}的前n項和為Tn,其中bn=
1
a nan+1
,(Ⅰ)求數(shù)列{an}的通項公式an,
(Ⅱ)若對于任意n∈N*,Tn≥m2-m-
9
5
,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一盒中裝有大小質(zhì)地相同的小球,其中紅球4個,白球、黑球各3個,
(Ⅰ)從中任取兩球,求取得的兩球顏色不同的概率;
(Ⅱ)將紅球標(biāo)上0,1,2,3;白球、黑球分別標(biāo)上0,1,2;現(xiàn)從盒中任意取出兩個小球.記所取出的兩球標(biāo)號之積為ξ,求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若存在實常數(shù)k和b,使得函數(shù)f(x)和g(x)對其定義域內(nèi)的任意實數(shù)x分別滿足f(x)≥kx+b和g(x)≤kx+b,則稱直線l:y=kx+b為f(x)和g(x)的“分界直線”.已知函數(shù)f(x)=2x2-4和函數(shù)g(x)=4lnx-2,那么函數(shù)f(x)和函數(shù)g(x)的分界直線方程為
 

查看答案和解析>>

同步練習(xí)冊答案