【題目】已知是圓上任意一點(diǎn),過作軸的垂線段, 為垂足.當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),線段中點(diǎn)的軌跡為曲線(包括點(diǎn)和點(diǎn)),為坐標(biāo)原點(diǎn).
(Ⅰ)求曲線的方程;
(Ⅱ)直線與曲線相切,且與圓相交于兩點(diǎn),當(dāng)的面積最大時(shí),試求直線的方程.
【答案】(Ⅰ);(Ⅱ) 或或或.
【解析】試題分析:(Ⅰ)設(shè)線段中點(diǎn), ,則,即,代入,包括點(diǎn)和點(diǎn),得,即得曲線的方程. (Ⅱ)(ⅰ)當(dāng)直線的斜率不存在時(shí),不合題意,故設(shè)方程為,聯(lián)立,得,因?yàn)橹本與曲線相切,所以. 又點(diǎn)到直線的距離為,且,表示即得解.
試題解析:
(Ⅰ)設(shè)線段中點(diǎn), ,則,即,
代入,包括點(diǎn)和點(diǎn),
得, 曲線的方程為.
(Ⅱ)(ⅰ)當(dāng)直線的斜率不存在時(shí),不合題意,故設(shè)方程為,
聯(lián)立,得,
, .
又點(diǎn)到直線的距離為,且,
,
當(dāng)即時(shí), 的面積最大為4,
,解得, ,
此時(shí)直線有4條,方程為或.(或一般方程為:
或或或)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的奇函數(shù)滿足,且在上是增函數(shù);
定義行列式; 函數(shù) (其中).
(1) 證明: 函數(shù)在上也是增函數(shù);
(2) 若函數(shù)的最大值為4,求的值;
(3) 若記集合M={m|恒有g()<0},,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)已知等差數(shù)列{an}滿足a1+a2=10,a4-a3=2.
(1)求{an}的通項(xiàng)公式.
(2)設(shè)等比數(shù)列{bn}滿足b2=a3,b3=a7.問:b6與數(shù)列{an}的第幾項(xiàng)相等?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項(xiàng)均不相等的等差數(shù)列{an}的前n項(xiàng)和為Sn,S10=45,且a3,a5,a9恰為等比數(shù)列{bn}的前三項(xiàng),記 .
(1)分別求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)若m=17,求cn取得最小值時(shí)n的值;
(3)當(dāng)c1為數(shù)列{cn}的最小項(xiàng)時(shí), 有相應(yīng)的可取值,我們把所有am的和記為A1;…;當(dāng)ci為數(shù)列的最小項(xiàng)時(shí),有相應(yīng)的可取值,我們把所有am的和記為Ai;…,令Tn= A1+ A2+…+An,求Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論:
①當(dāng)直線AB與a成60°角時(shí),AB與b成30°角;
②當(dāng)直線AB與a成60°角時(shí),AB與b成60°角;
③直線AB與a所成角的最小值為45°;
④直線AB與a所成角的最大值為60°.
其中正確的是________.(填寫所有正確結(jié)論的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ,過點(diǎn)作圓的切線交橢圓于、兩點(diǎn).
(Ⅰ)求橢圓的焦點(diǎn)坐標(biāo)和離心率;
(Ⅱ)將表示成的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)家歐拉1765年在其所著的《三角形幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知△ABC的頂點(diǎn)A(2,0),B(0,4),若其歐拉線的方程為x-y+2=0,則頂點(diǎn)C的坐標(biāo)是( )
A. (-4,0) B. (0,-4) C. (4,0) D. (4,0)或(-4,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是公差不為零的等差數(shù)列, 是等比數(shù)列,且,,.
(1)求數(shù)列,的通項(xiàng)公式;
(2)記,求數(shù)列的前項(xiàng)和;
(3)若滿足不等式成立的恰有個(gè),求正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和是Sn,且Sn=1(n∈N),數(shù)列{bn}是公差d不等于0的等差數(shù)列,且滿足:b1=,而b2,b5,ba14成等比數(shù)列.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com