19.方程(x+2)(x+4)(x+6)(x+8)=105的解是x=-1,或x=-9.

分析 令x2+10x+16=t,則原方程可化為:t2+8t-105=0,解得答案.

解答 解:(x+2)(x+4)(x+6)(x+8)=(x2+10x+16)(x2+10x+24),
令x2+10x+16=t,
則原方程可化為:t2+8t-105=0,
解得:t=-15,或t=7,
解x2+10x+16=-15得方程無解;
解x2+10x+16=7得:x=-1,或x=-9,
故答案為:x=-1,或x=-9

點評 本題考查的知識點是函數(shù)與方程的綜合應(yīng)用,將高次方程利用整體思想,轉(zhuǎn)化為低次方程是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在等差數(shù)列{an}中,a4=2,a5=4,記an的前n項和為Sn,則S8=( 。
A.12B.16C.24D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知(1+x)(x+$\frac{1}{{x}^{2}}$)n的展開式中沒有常數(shù)項,則n的值可能是( 。
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{1}{2}$,且長軸長等于4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)F1,F(xiàn)2是橢圓C的兩個焦點,⊙O是以F1,F(xiàn)2為直徑的圓,直線l:y=kx+m與⊙O相切,并與橢圓C交于不同的兩點A,B,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=-$\frac{3}{2}$,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=lnx+$\frac{a}{x}$(a>0).
(1)求f(x)的單調(diào)區(qū)間;
(2)P(x0,y0)是曲線y=f(x)上的任意一點,若以P(x0,y0)為切點的切線的斜率k≤$\frac{1}{2}$恒成立,求實數(shù)a的最小值;
(3)若關(guān)于x的方程$\frac{{x}^{3}+2(bx+a)}{2x}$=f(x)+$\frac{1}{2}$在區(qū)間(0,e)上有兩個不相等的實根,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知a為常數(shù),函數(shù)$f(x)=xlnx-\frac{1}{2}a{x^2}$,
(1)當(dāng)a=0時,求函數(shù)f(x)的最小值;
(2)若f(x)有兩個極值點x1,x2(x1<x2
①求實數(shù)a的取值范圍;
②求證:$f({x_1})<-\frac{1}{e}$且x1x2>1(其中e為自然對數(shù)的底)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^{x-2}}-1,x≥0\\ x+2,x<0\end{array}\right,g(x)=\left\{\begin{array}{l}{x^2}-2x,x≥0\\ \frac{1}{x},x<0.\end{array}\right.$則函數(shù)f[g(x)]的所有零點之和是$\frac{1}{2}$+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ax2-lnx(a∈R)
(1)若函數(shù)y=f(x)圖象上點(1,f(1))處的切線方程y=x+b(b∈R),求實數(shù)a,b的值;
(2)若y=f(x)在x=2處取得極值,求函數(shù)f(x)在區(qū)間[$\frac{1}{e}$,e]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的首項a1=1,前n項和為Sn,且Sn+1=2Sn+n+1(n∈N*
(1)證明數(shù)列{an+1}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)求數(shù)列{nan+n}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案