某公司生產(chǎn)的某批產(chǎn)品的銷售量P萬件(生產(chǎn)量與銷售量相等)與促銷費用x萬元滿足P=
x+2
4
(其中0≤x≤a,a為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本6(P+
1
P
)萬元(不含促銷費用),產(chǎn)品的銷售價格定為(4+
20
p
)元/件.
(1)將該產(chǎn)品的利潤y萬元表示為促銷費用x萬元的函數(shù);
(2)促銷費用投入多少萬元時,該公司的利潤最大?
考點:函數(shù)模型的選擇與應用
專題:應用題,函數(shù)的性質(zhì)及應用
分析:(1)根據(jù)產(chǎn)品的利潤=銷售額-產(chǎn)品的成本建立函數(shù)關系;
(2)利用導數(shù)基本不等式可求出該函數(shù)的最值,注意等號成立的條件.
解答: 解:(Ⅰ)由題意知,y=(4+
20
p
)p-x-6(p+
1
p
),
將p=
x+2
4
代入化簡得:y=19-
24
x+2
-
3
2
x(0≤x≤a);
(Ⅱ)y=22-
3
2
16
x+2
+x+2)≤22-3
16
x+2
×(x+2)
=10,
當且僅當
16
x+2
=x+2,即x=2時,上式取等號;
當a≥2時,促銷費用投入2萬元時,該公司的利潤最大;
y=19-
24
x+2
-
3
2
x,y′=
24
(x+2)2
-
3
2
,
∴a<2時,函數(shù)在[0,a]上單調(diào)遞增,
∴x=a時,函數(shù)有最大值.即促銷費用投入a萬元時,該公司的利潤最大.
點評:本題主要考查了函數(shù)模型的選擇與應用,以及基本不等式在最值問題中的應用,同時考查了計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

命題“每一個四邊形的四個頂點共圓”的否定是(  )
A、存在一個四邊形,它的四個頂點不共圓
B、存在一個四邊形,它的四個頂點共圓
C、所有四邊形的四個頂點共圓
D、所有四邊形的四個頂點都不共圓

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|x+2y+3z|≥4(x,y,z∈R)
(Ⅰ)求x2+y2+z2的最小值;
(Ⅱ)若|a+2|≤
7
2
(x2+y2+z2)對滿足條件的一切實數(shù)x,y,z恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知下列命題:
①函數(shù)y=2sin(x-
π
4
)在(
4
,
4
)單調(diào)遞增;
②當x>0且x≠1時,lgx+
1
lgx
≥2;
③已知
a
=(1,2),
b
=(-2,-1),則
a
b
上的投影值為-
4
5
5
;
④設f(x)=ax2+bx+c(a,b,c∈R),若f(x)>0的解集為(2,4)則f(x+1)<0的解集是(-∞,1)∪(3,+∞)
則其中所有正確的命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=cos
x+θ
2
(0≤θ<2π)為奇函數(shù),則θ等于( 。
A、0
B、
π
2
C、π
D、
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(x,y)在如圖所示的正六邊形P1P2P3P4P5P6區(qū)域(含邊界)內(nèi)運動,則當z=4x+5y取到最大值時,點P為于( 。
A、P1
B、P2
C、P3
D、P4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=
1
2
sin(3x+
π
6
)+1
①求函數(shù)的最小正周期;
②y取得最值時的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求值:tan42°+tan78°-
3
tan42°•tan78°=(  )
A、-
3
3
B、
3
3
C、-
3
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知n階方陣A≠B,矩形C也為n階方陣,則“AC=BC”是“矩陣C中元素都為0”的
 
條件.

查看答案和解析>>

同步練習冊答案