已知數(shù)列滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)對(duì)任意給定的,是否存在()使成等差數(shù)列?若存在,用分別表示和(只要寫出一組);若不存在,請(qǐng)說(shuō)明理由;
(3)證明:存在無(wú)窮多個(gè)三邊成等比數(shù)列且互不相似的三角形,其邊長(zhǎng)為.
解(1)當(dāng)時(shí),;
當(dāng)時(shí),,
所以;
綜上所述,. ……………3分
(2)當(dāng)時(shí),若存在p,r使成等差數(shù)列,則,
因?yàn)?sub>,所以,與數(shù)列為正數(shù)相矛盾,因此,當(dāng)時(shí)不存在…5分
當(dāng)時(shí),設(shè),則,所以,………7分
令,得,此時(shí),,
所以,,
所以;
綜上所述,當(dāng)時(shí),不存在p,r;當(dāng)時(shí),存在滿足題設(shè).
……………………10分
(3)作如下構(gòu)造:,其中,
它們依次為數(shù)列中的第項(xiàng),第項(xiàng),第項(xiàng), ……12分
顯然它們成等比數(shù)列,且,,所以它們能組成三角形.
由的任意性,這樣的三角形有無(wú)窮多個(gè). …………14分
下面用反證法證明其中任意兩個(gè)三角形和不相似:
若三角形和相似,且,則,
整理得,所以,這與條件相矛盾,
因此,任意兩個(gè)三角形不相似.
故命題成立. …………………16分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知數(shù)列{}滿足
(1)求證:數(shù)列是等比數(shù)列,并求出{}的通項(xiàng)公式。
(2)如果對(duì)任意n不等式恒成立,求實(shí)數(shù)k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年湖南省洞口四中上學(xué)期高二學(xué)考模擬試題六 題型:解答題
已知數(shù)列滿足,
(1)求;(2)判斷20是不是這個(gè)數(shù)列的項(xiàng),并說(shuō)明理由; (3)求這個(gè)數(shù)列前n項(xiàng)的和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省佛山市高三5月臨考集訓(xùn)理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知數(shù)列滿足,
(1)若,求;
(2)是否存在,使當(dāng)時(shí),恒為常數(shù).若存在求,否則說(shuō)明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省中山市高三上學(xué)期期末考試文科數(shù)學(xué) 題型:解答題
.(本小題滿分14分)
已知數(shù)列{}滿足 .
(1)證明:數(shù)列{+2}是等比數(shù)列.并求數(shù)列{}的通項(xiàng)公式;
(2)若數(shù)列{}滿足,設(shè)是數(shù)列的前n項(xiàng)和.
求證:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com