已知圓方程為y2-6ysinθ+x2-8xcosθ+7cos2θ+8=0.
①求圓心軌跡的參數(shù)方程C;
②點(diǎn)P(x,y)是①中曲線C上的動(dòng)點(diǎn),求2x+y的取值范圍.
考點(diǎn):圓的參數(shù)方程
專題:計(jì)算題,坐標(biāo)系和參數(shù)方程
分析:先將圓的一般式方程轉(zhuǎn)化成圓的標(biāo)準(zhǔn)方程,從而求出圓心的參數(shù)方程,利用參數(shù)方程將2x+y表示成8cosθ+3sinθ,然后利用輔助角公式求出8cosθ+3sinθ的取值范圍即可.
解答: 解:①將圓的方程整理得:(x-4cosθ)2+(y-3sinθ)2=1
則圓的圓心C的參數(shù)方程為:
x=4cosθ
y=3sinθ
(θ為參數(shù),θ∈R);
②由于點(diǎn)P(x,y)是①中曲線C上的動(dòng)點(diǎn),
則2x+y=8cosθ+3sinθ=
73
8
73
cosθ+
3
73
sinθ

=
73
cos(θ-φ)(φ為輔助角),
則最大值為
73
,最小值為-
73

則2x+y的取值范圍是[-
73
73
].
點(diǎn)評(píng):本題主要考查了圓的方程,以及三角函數(shù)模型的應(yīng)用問題和輔助角公式的應(yīng)用,同時(shí)考查了計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線C:y2=4x的焦點(diǎn)為F,直線l過點(diǎn)M(2,0)且與C交于A、B兩點(diǎn),|BF|=
3
2
,若|AM|=λ|BM|,則λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinx-
1
2
x(x∈[0,π]),那么下列結(jié)論正確的是( 。
A、f(x)在[0,
π
2
]上是增函數(shù)
B、f(x)在[
π
6
,π]上是減函數(shù)
C、?x∈[0,π],f(x)>f(
π
3
)
D、?x∈[0,π],f(x)≤f(
π
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)對(duì)于任意的實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且當(dāng)x>0時(shí)f(x)<0恒成立.
(1)證明函數(shù)f(x)的奇偶性;
(2)若f(1)=-2,求函數(shù)f(x)在[-2,2]上的最大值;
(3)解關(guān)于x的不等式
1
2
f(-2x2)-f(x)>
1
2
f(4x)-f(-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程9x-(4+a)•3x+4=0有解,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E為BC1的中點(diǎn),則DE與面BCC1B1所成角的正切值為(  )
A、
6
2
B、
6
2
C、
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知E為正方體ABCD-A1B1C1D1的棱DD1中點(diǎn),則BD1與平面ACE位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)f(x)滿足:對(duì)于任意x∈R,有f(x)=f(2-x).若tanα=
1
2
,則f(-10sinαcosα)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是正方體的平面展開圖,則在這個(gè)正方體中:
①BM與ED異面;         ②CN∥BE;
③CN與BF成60°角;     ④DM⊥BN.
以上四個(gè)命題中,正確的命題序號(hào)是( 。
A、①②③B、①②④
C、①③④D、①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案