已知橢圓過點,且離心率為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若點與點均在橢圓上,且關(guān)于原點對稱,問:橢圓上是否存在點(點在一象限),使得為等邊三角形?若存在,求出點的坐標(biāo);若不存在,請說明理由.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.為了得到函數(shù)y=sin(-3x)的圖象,只需將函數(shù)y=cos(3x+$\frac{π}{4}$)的圖象( 。
A.向左平移$\frac{π}{4}$個單位B.向右平移$\frac{π}{4}$個單位
C.向左平移$\frac{π}{12}$個單位D.向右平移$\frac{π}{12}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年遼寧大連十一中高一下學(xué)期段考二試數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

已知一扇形的周長為40,當(dāng)扇形的面積最大時, 扇形的圓心角等于( )

A. 2 B. 3 C. 1 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖甲,⊙O的直徑AB=2,圓上兩點C,D在直徑AB的兩側(cè),使∠CAB=$\frac{π}{4}$,∠DAB=$\frac{π}{3}$.沿直徑AB折起,使兩個半圓所在的平面互相垂直(如圖乙),F(xiàn)為BC的中點.根據(jù)圖乙解答下列各題:
(1)求點D到平面ABC的距離;
(2)如圖:若∠DOB的平分線交弧$\widehat{BD}$于一點G,試判斷FG是否與平面ACD平行?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,菱形ABCD與正三角形BCE的邊長均為2,它們所在平面互相垂直,F(xiàn)D⊥平面ABCD,且FD=$\sqrt{3}$.
(I)求證:EF∥平面ABCD;
(Ⅱ)若∠CBA=60°,求二面角A-FB-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.2015男籃亞錦賽決賽階段,中國男籃以9連勝的不敗戰(zhàn)績贏得第28屆亞錦賽冠軍,同時拿到亞洲唯一1張直通里約奧運會的入場券.賽后,中國男籃主力易建聯(lián)榮膺本屆亞錦賽MVP(最有價值球員),下表是易建聯(lián)在這9場比賽中投籃的統(tǒng)計數(shù)據(jù).
比分易建聯(lián)技術(shù)統(tǒng)計
投籃命中罰球命中全場得分真實得分率
中國91-42新加坡3/76/71259.52%
中國76-73韓國7/136/82060.53%
中國84-67約旦12/202/526x
中國75-62哈薩克期坦5/75/51581.52%
中國90-72黎巴嫩7/115/51971.97%
中國85-69卡塔爾4/104/41355.27%
中國104-58印度8/125/52173.94%
中國70-57伊朗5/102/41355.27%
中國78-67菲律賓4/143/61133.05%
注:(1)表中a/b表示出手b次命中a次;
(2)TS%(真實得分率)是衡量球員進(jìn)攻的效率,其計算公式為:
TS%=$\frac{全場得分}{2×(投籃出手次數(shù)+0.44×罰球出手次數(shù))}$.
(Ⅰ)求表中x的值;
(Ⅱ)從上述9場比賽中隨機選擇一場,求易建聯(lián)在該場比賽中TS%超過50%的概率;
(Ⅲ)用x來表示易建聯(lián)某場的得分,用y來表示中國隊該場的總分,畫出散點圖如圖所示,請根據(jù)散點圖判斷y與x之間是否具有線性相關(guān)關(guān)系?結(jié)合實際簡單說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),左焦點F(-$\sqrt{3}$,0),且離心率e=$\frac{\sqrt{3}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=x+m與橢圓C交于不同的兩點M,N(M,N不是左、右頂點),且以MN為直徑的圓經(jīng)過橢圓C的右頂點A.求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,正方形ABCD中,以D為圓心、DA為半徑的圓弧與以BC為直徑的半圓O交于點F,連接CF并延長交AB于點E.
(Ⅰ)求證:AE=EB;
(Ⅱ)若EF•FC=$\frac{4}{5}$,求正方形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖所示,MA為圓O的切線,A為切點,割線MC交圓O于B,C兩點,MA=6,MB=3,AB=$\sqrt{17}$,∠BAC的角平分線與BC和圓O分別交于點D,E.
(Ⅰ)求證:$\frac{MA}{MC}$=$\frac{BD}{CD}$;
(Ⅱ)求AD和AE的長.

查看答案和解析>>

同步練習(xí)冊答案