2.下列命題正確的個(gè)數(shù)為(  )
①垂直于同一直線的兩直線垂直;
②過A,B,C三點(diǎn)有且只有一個(gè)平面;
③若直線a與b異面且a與c異面,則b與c是異面直線;
④兩個(gè)平面α,β有一個(gè)公共點(diǎn)A,就說α,β相交于A點(diǎn),并記作α∩β=A.
A.0B.1C.2D.3

分析 在①中,垂直于同一直線的兩直線相交、平行或異面;在②中,當(dāng)A、B、C共線時(shí),過A,B,C三點(diǎn)有無數(shù)個(gè)平面;在③中,b與c有可能是共面直線;在④中,兩個(gè)平面α,β有一個(gè)公共點(diǎn)A,就說α,β相交于過A點(diǎn)的一條直線l,并記作α∩β=l.

解答 解:在①中,垂直于同一直線的兩直線相交、平行或異面,故①錯(cuò)誤;
在②中,當(dāng)A、B、C不共線時(shí),過A,B,C三點(diǎn)有且只有一個(gè)平面;
當(dāng)A、B、C共線時(shí),過A,B,C三點(diǎn)有無數(shù)個(gè)平面.故②錯(cuò)誤;
在③中,若直線a與b異面且a與c異面,則b與c有可能是共面直線,故③錯(cuò)誤;
在④中,兩個(gè)平面α,β有一個(gè)公共點(diǎn)A,就說α,β相交于過A點(diǎn)的一條直線l,并記作α∩β=l.故④錯(cuò)誤.
故選:A.

點(diǎn)評(píng) 本題考查命題真假的判斷,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,三個(gè)角A、B、C所對(duì)的邊分別為a、b、c.若角A、B、C成等差數(shù)列,且邊a、b、c成等比數(shù)列,則△ABC的形狀為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若x>y>1,a=$\frac{1}{2}$(lgx+lgy),b=$\sqrt{lgx•lgy}$,c=lg$\frac{x+y}{2}$,則(  )
A.c<b<aB.b<a<cC.b<c<aD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知a1=1,an+1=$\frac{{a}_{n}}{3{a}_{n}+1}$,則數(shù)列{an}的通項(xiàng)為an=$\frac{1}{3n-2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.光線沿著直線y=-3x+b射到直線x+y=0上,經(jīng)反射后沿著直線y=ax+2射出,則有( 。
A.a=$\frac{1}{3}$,b=6B.a=-$\frac{1}{3}$,b=-6C.a=3,b=-$\frac{1}{6}$D.a=-3,b=$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知扇形的面積為4cm2,扇形的周長為8cm,則扇形的圓心角、半徑分別為2、2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.滿足z2=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i的復(fù)數(shù)z=$\frac{\sqrt{3}}{2}+\frac{1}{2}i$或-$\frac{\sqrt{3}}{2}-\frac{1}{2}i$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在△ABC中,已知D是AB邊上一點(diǎn),若$\overrightarrow{AD}$=$\frac{1}{3}\overrightarrow{AB}$,$\overrightarrow{CD}$=$\frac{2}{3}$$\overrightarrow{CA}$+$λ\overrightarrow{CB}$,則λ=( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.-$\frac{1}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=3x+x-5,用二分法求方程3x+x-5=0在x∈(0,2)內(nèi)近似解的過程中,取區(qū)間中點(diǎn)x0=1,那么下一個(gè)有根區(qū)間為(  )
A.(0,1)B.(1,2)C.(1,2)或(0,1)都可以D.不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案