6.已知等差數(shù)列{an}的前n項和為Sn,a2=3,S5=25,正項數(shù)列{bn}滿足${b_1}{b_2}{b_3}…{b_n}={({\sqrt{3}})^{s_n}}$.
(1)求數(shù)列{an},{bn}的通項公式;
(2)若(-1)nλ<2+$\frac{{{{({-1})}^{n+1}}}}{a_n}$對一切正整數(shù)n均成立,求實數(shù)λ的取值范圍.

分析 (1)由已知利用等差數(shù)前n項和、通項公式能求出首項和公差,由此能求出數(shù)列{an}的通項公式;由${b_1}{b_2}…{b_n}={({\sqrt{3}})^{S_n}}$,得${b_1}{b_2}{b_3}…{b_{n-1}}={({\sqrt{3}})^{{S_{n-1}}}}$,兩式相除能求出數(shù)列{bn}的通項公式.
(2)由已知條件根據(jù)n為奇數(shù)和n為偶數(shù)兩種情況分類討論,能求出實數(shù)λ的取值范圍.

解答 解:(1)∵等差數(shù)列{an}的前n項和為Sn,S5=25,
∴S5=5a3=25,故a3=5,
又a2=3,則d=a3-a2=5-3=2,故an=2n-1,
∵正項數(shù)列{bn}滿足${b_1}{b_2}…{b_n}={({\sqrt{3}})^{S_n}}$,
∴${b_1}{b_2}{b_3}…{b_{n-1}}={({\sqrt{3}})^{{S_{n-1}}}}$,n≥2
兩式相除得${b_n}={({\sqrt{3}})^{2n-1}}({n≥2})$,
又${b_1}={({\sqrt{3}})^{S_1}}={({\sqrt{3}})^1}$滿足上式,
故${b_n}={({\sqrt{3}})^{2n-1}}({n≥1})$
(2)${({-1})^n}λ<2+\frac{{{{({-1})}^{n+1}}}}{a_n}$,即(-1)nλ<2+$\frac{(-1)^{n+1}}{2n-1}$對一切正整數(shù)n均成立,
①n為奇數(shù)時,$λ>-2-\frac{1}{2n-1}$恒成立,則λ≥-2
②n為偶數(shù)時,$λ<2-\frac{1}{2n-1}$恒成立,則$λ<\frac{5}{3}$
綜上$-2≤λ<\frac{5}{3}$.

點評 本題考查數(shù)列的通項公式的求法,考查實數(shù)的取值范圍的求法,是中檔題,解題時要認真審題,注意等差數(shù)列的性質(zhì)和分類討論思想的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.等比數(shù)列{an}中,若a2?a6=8,則log2(a1?a7)等于( 。
A.8B.2C.16D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)$f(x)=\sqrt{x-1}+ln(4-x)$的定義域是( 。
A.(1,+∞)B.[1,4)C.(1,4]D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知拋物線C1:y2=2px(p>0),過其焦點且斜率為-1的直線交拋物線于C,D兩點,若線段CD的中點的縱坐標為-2
(1)求拋物線C1的方程;
(2)過點F的直線交拋物線C1于A,B兩不同點,交y軸于點N,已知$\overrightarrow{NA}$=λ1$\overrightarrow{AF}$,$\overrightarrow{NB}$=λ2$\overrightarrow{BF}$,則λ12是否為定值?若是,求出其值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.(1)求與雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1有相同焦點,且經(jīng)過點(3$\sqrt{2}$,2)的雙曲線的標準方程.
(2)已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線均和圓C:x2+y2-6x+5=0相切,且雙曲線的右焦點為圓C的圓心,求該雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若tanα+$\frac{1}{tanα}$=$\frac{10}{3}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),則sin(2α+$\frac{π}{4}$)+2cos$\frac{π}{4}$sin2α=$\frac{4\sqrt{2}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設命題p:實數(shù)x滿足(x-a)(x-3a)<0,其中a>0;命題q:實數(shù)x滿足x2-5x+6≤0,若¬p是q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.不等式$\frac{x+1}{2-x}$≤0的解集為(  )
A.[-2,1]B.[-1,2]C.[-1,2)D.(-∞,-1]∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)f(x)=lg(1-x)的值域為(-∞,1),則函數(shù)f(x)的定義域為( 。
A.[-9,1)B.(-9,1)C.[0,+∞)D.[-9,+∞)

查看答案和解析>>

同步練習冊答案