14.命題p:“?x0∈[0,$\frac{π}{4}$],sin2x0+cos2x0>a”是假命題,則實(shí)數(shù)a的取值范圍是( 。
A.a<1B.a<$\sqrt{2}$C.a≥1D.a≥$\sqrt{2}$

分析 特稱(chēng)命題轉(zhuǎn)化為全稱(chēng)命題,求出sin(2x+$\frac{π}{4}$)的最大值,從而求出a的范圍即可.

解答 解:“?x0∈[0,$\frac{π}{4}$],sin2x0+cos2x0>a”是假命題,
即?x∈[0,$\frac{π}{4}$],sin2x+cos2x≤a是真命題,
由sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$)≤a,
得:sin(2x+$\frac{π}{4}$)≤$\frac{a}{\sqrt{2}}$,
由x∈[0,$\frac{π}{4}$]得:2x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{3π}{4}$],
故sin(2x+$\frac{π}{4}$)的最大值是1,
故只需$\frac{a}{\sqrt{2}}$≥1,解得:a≥$\sqrt{2}$,
故選:D.

點(diǎn)評(píng) 本題考查了特稱(chēng)命題轉(zhuǎn)化為全稱(chēng)命題,考查三角函數(shù)問(wèn)題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}x,x>0\\ sin\frac{π}{6}x,x≤0\end{array}\right.$,則$f[{f(\frac{1}{4})}]$=( 。
A.$\frac{1}{2}$B.-1C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某人經(jīng)營(yíng)一個(gè)抽獎(jiǎng)游戲,顧客花費(fèi)3元錢(qián)可購(gòu)買(mǎi)一次游戲機(jī)會(huì),每次游戲中,顧客從標(biāo)有黑1、黑2、黑3、黑4、紅1、紅3的6張卡片中隨機(jī)抽取2張,并根據(jù)摸出的卡片的情況進(jìn)行兌獎(jiǎng),經(jīng)營(yíng)者將顧客抽到的卡片情況分成以下類(lèi)別:A:同花順,即卡片顏色相同且號(hào)碼相鄰;B:同花,即卡片顏色相同,但號(hào)碼不相鄰;C:順子,即卡片號(hào)碼相鄰,但顏色不同;D:對(duì)子,即兩張卡片號(hào)碼相同;E:其他,即A,B,C,D以外的所有可能情況.若經(jīng)營(yíng)者打算將以上五種類(lèi)別中最不容易發(fā)生的一種類(lèi)別對(duì)應(yīng)顧客中一等獎(jiǎng),最容易發(fā)生的一種類(lèi)別對(duì)應(yīng)顧客中二等獎(jiǎng),其他類(lèi)別對(duì)應(yīng)顧客中三等獎(jiǎng).
(1)一、二等獎(jiǎng)分別對(duì)應(yīng)哪一種類(lèi)別?(寫(xiě)出字母即可)
(2)若經(jīng)營(yíng)者規(guī)定:中一、二、三等獎(jiǎng),分別可獲得價(jià)值9元、3元、1元的獎(jiǎng)品,假設(shè)某天參與游戲的顧客為300人次,試估計(jì)經(jīng)營(yíng)者這一天的盈利.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列說(shuō)法錯(cuò)誤的是(  )
A.數(shù)列4,7,3,4的首項(xiàng)是4
B.數(shù)列{an}中,若a1=3,則從第2項(xiàng)起,各項(xiàng)均不等于3
C.數(shù)列-1,0,1,2與數(shù)列0,1,2,-1不相同
D.數(shù)列中的項(xiàng)不能是三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列關(guān)于函數(shù)y=ln|x|的敘述正確的是( 。
A.是奇函數(shù),且在(0,+∞)上是增函數(shù)B.是奇函數(shù),且在(0,+∞)上是減函數(shù)
C.是偶函數(shù),且在(0,+∞)上是減函數(shù)D.是偶函數(shù),且在(0,+∞)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知8>7,16>9,32>11,…,則有( 。
A.2n>2n+1B.2n+1>2n+1C.2n+2>2n+5D.2n+3>2n+7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知點(diǎn)P在圓x2+y2-2x+4y+1=0上,點(diǎn)Q在不等式組$\left\{\begin{array}{l}{x+y≥2}\\{x-y≤2}\\{y≤1}\end{array}\right.$,表示的平面區(qū)域內(nèi),則線段PQ長(zhǎng)的最小值是$\sqrt{5}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.雙曲線C的兩漸近線為l1,l2,過(guò)右焦點(diǎn)F作FB∥l1且交l2于點(diǎn)B,過(guò)點(diǎn)B作BA⊥l2且交l1于點(diǎn)A.若AF⊥x軸,則雙曲線C的離心率為( 。
A.$\sqrt{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若等差數(shù)列{an}的公差為-2,且a1+a4+a7=9,則a2+a5+a8=3.

查看答案和解析>>

同步練習(xí)冊(cè)答案