A. | a<1 | B. | a<$\sqrt{2}$ | C. | a≥1 | D. | a≥$\sqrt{2}$ |
分析 特稱命題轉(zhuǎn)化為全稱命題,求出sin(2x+$\frac{π}{4}$)的最大值,從而求出a的范圍即可.
解答 解:“?x0∈[0,$\frac{π}{4}$],sin2x0+cos2x0>a”是假命題,
即?x∈[0,$\frac{π}{4}$],sin2x+cos2x≤a是真命題,
由sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$)≤a,
得:sin(2x+$\frac{π}{4}$)≤$\frac{a}{\sqrt{2}}$,
由x∈[0,$\frac{π}{4}$]得:2x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{3π}{4}$],
故sin(2x+$\frac{π}{4}$)的最大值是1,
故只需$\frac{a}{\sqrt{2}}$≥1,解得:a≥$\sqrt{2}$,
故選:D.
點評 本題考查了特稱命題轉(zhuǎn)化為全稱命題,考查三角函數(shù)問題,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -1 | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 數(shù)列4,7,3,4的首項是4 | |
B. | 數(shù)列{an}中,若a1=3,則從第2項起,各項均不等于3 | |
C. | 數(shù)列-1,0,1,2與數(shù)列0,1,2,-1不相同 | |
D. | 數(shù)列中的項不能是三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 是奇函數(shù),且在(0,+∞)上是增函數(shù) | B. | 是奇函數(shù),且在(0,+∞)上是減函數(shù) | ||
C. | 是偶函數(shù),且在(0,+∞)上是減函數(shù) | D. | 是偶函數(shù),且在(0,+∞)上是增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2n>2n+1 | B. | 2n+1>2n+1 | C. | 2n+2>2n+5 | D. | 2n+3>2n+7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com