20.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{64}{3}$+8πB.24+8πC.16+16πD.8+16π

分析 根據(jù)三視圖可知幾何體是組合體:上面是長(zhǎng)方體和四棱錐,下面是半個(gè)圓柱,由三視圖求出幾何元素的長(zhǎng)度,由柱體、錐體的體積公式求出幾何體的體積.

解答 解:根據(jù)三視圖可知幾何體是組合體:
上面是長(zhǎng)方體和四棱錐,下面是半個(gè)圓柱,
且圓柱的底面半徑是2,母線長(zhǎng)是4,
長(zhǎng)方體的長(zhǎng)、寬、高分別是4、2、2,
四棱錐的底面是邊長(zhǎng)為4、2的長(zhǎng)方體、高是2,
∴該幾何體的體積V=$4×2×2+\frac{1}{3}×2×4×2+\frac{1}{2}π×{2}^{2}×4$=$\frac{64}{3}+8π$
故選:A.

點(diǎn)評(píng) 本題考查由三視圖求組合體的體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年內(nèi)蒙古高二理上月考一數(shù)學(xué)理試卷(解析版) 題型:填空題

若不等式成立的充分條件是,則實(shí)數(shù)的取值范圍是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江西吉安一中高二上段考一數(shù)學(xué)(理)試卷(解析版) 題型:解答題

已知直角的頂點(diǎn)坐標(biāo),直角頂點(diǎn),頂點(diǎn)軸上.

(1)求點(diǎn)的坐標(biāo);

(2)求斜邊的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線和虛線畫出的是多面體的三視圖,則該多面體的體積為( 。
A.$\frac{20}{3}$B.8C.$\frac{22}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江西吉安一中高二上段考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

設(shè)是正三棱錐,的重心,上的一點(diǎn),且,若,則為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在底面為正三角形的三棱柱ABC-A1B1C1,AB=2,AA1⊥平面ABC,E,F(xiàn),G分別為BB1,AB,AC的中點(diǎn).
(Ⅰ)求證:BG∥平面A1EC1;
(Ⅱ)若AA1=2$\sqrt{2}$,求二面角A1-EC-F的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=∠ACD=90°,∠EAC=60°,AB=AC=AE.
(1)若P是BC的中點(diǎn),求證:DP∥平面EAB;
(2)求平面EBD與平面ACDE所成的銳二面角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)=cosx+xsinx-m,x∈[-π,π],若f(x)有4個(gè)零點(diǎn),則m的取值范圍為(1,$\frac{π}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.一個(gè)商人將子彈放進(jìn)兩種盒子里,每個(gè)大盒子裝12個(gè),每個(gè)小盒子裝5個(gè),恰好裝完,如果子彈數(shù)為99,盒子數(shù)大于9,問(wèn)兩種盒子各有多少個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案