【題目】已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為4,E為棱CC1的中點(diǎn),點(diǎn)M在正方形BCC1B1內(nèi)運(yùn)動(dòng),且直線AM∥平面A1DE,則動(dòng)點(diǎn)M的軌跡長(zhǎng)度為______.
【答案】2
【解析】
設(shè)平面DA1E與直線B1C1交于點(diǎn)F,連接EF,則F為B1C1的中點(diǎn).分別取B1B、BC的中點(diǎn)N、O,連接AN、ON、AO,可證出平面A1DE∥平面ANO,據(jù)此確定點(diǎn)M的軌跡進(jìn)一步求解其長(zhǎng)度即可.
設(shè)平面DA1E與直線B1C1交于點(diǎn)F,連接EF,則F為B1C1的中點(diǎn).
分別取B1B、BC的中點(diǎn)N、O,連接AN、ON、AO,
則∵A1F∥AO,AN∥DE,A1F,DE平面A1DE,
AO,AN平面ANO,
∴A1F∥平面ANO.同理可得DE∥平面ANO,
∵A1F、DE是平面A1DE內(nèi)的相交直線,
∴平面A1DE∥平面ANO,
所以NO∥平面A1DE,
∴直線NO平面A1DE,
∴M的軌跡被正方形BCC1B1截得的線段是線段NO.
∴M的軌跡被正方形BCC1B1截得的線段長(zhǎng)NO=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎(jiǎng)勵(lì)1元;乙方案:底薪140元,每日前55單沒有獎(jiǎng)勵(lì),超過(guò)55單的部分每單獎(jiǎng)勵(lì)12元.
(1)請(qǐng)分別求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;
(2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)與天數(shù)滿足以下表格:
日均派送單數(shù) | 52 | 54 | 56 | 58 | 60 |
頻數(shù)(天) | 20 | 30 | 20 | 20 | 10 |
回答下列問(wèn)題:
①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為(單位:元),試分別求出這100天中甲、乙兩種方案的日薪平均數(shù)及方差;
②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計(jì)學(xué)的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說(shuō)明你的理由.
(參考數(shù)據(jù): , , , , , , , , )
【答案】(1);(2)見解析
【解析】試題分析:(1)甲方案:底薪100元,每派送一單獎(jiǎng)勵(lì)1元;乙方案:底薪140元,每日前55單沒有獎(jiǎng)勵(lì),超過(guò)55單的部分每單獎(jiǎng)勵(lì)12元. 求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;
①、由表格可知,甲方案中,日薪為152元的有20天,日薪為154元的有30天,日薪為156元的有20天,日薪為158元的有20天,日薪為160元的有10天,由此可求出這100天中甲方案的日薪平均數(shù)及方差:同理可求出這100天中乙兩種方案的日薪平均數(shù)及方差,
②不同的角度可以有不同的答案
試題解析:((1)甲方案中派送員日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式為: ,
乙方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關(guān)系式為:
,
(2)①、由表格可知,甲方案中,日薪為152元的有20天,日薪為154元的有30天,日薪為156元的有20天,日薪為158元的有20天,日薪為160元的有10天,則
,
,
乙方案中,日薪為140元的有50天,日薪為152元的有20天,日薪為176元的有20天,日薪為200元的有10天,則
,
②、答案一:
由以上的計(jì)算可知,雖然,但兩者相差不大,且遠(yuǎn)小于,即甲方案日薪收入波動(dòng)相對(duì)較小,所以小明應(yīng)選擇甲方案.
答案二:
由以上的計(jì)算結(jié)果可以看出, ,即甲方案日薪平均數(shù)小于乙方案日薪平均數(shù),所以小明應(yīng)選擇乙方案.
【題型】解答題
【結(jié)束】
20
【題目】已知橢圓: 的左、右焦點(diǎn)分別為, ,且離心率為, 為橢圓上任意一點(diǎn),當(dāng)時(shí), 的面積為1.
(1)求橢圓的方程;
(2)已知點(diǎn)是橢圓上異于橢圓頂點(diǎn)的一點(diǎn),延長(zhǎng)直線, 分別與橢圓交于點(diǎn), ,設(shè)直線的斜率為,直線的斜率為,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三個(gè)內(nèi)角所對(duì)的邊分別是,若.
(1)求角;
(2)若的外接圓半徑為2,求周長(zhǎng)的最大值.
【答案】(1) ;(2) .
【解析】試題分析:(1)由正弦定理將邊角關(guān)系化為邊的關(guān)系,再根據(jù)余弦定理求角,(2)先根據(jù)正弦定理求邊,用角表示周長(zhǎng),根據(jù)兩角和正弦公式以及配角公式化為基本三角函數(shù),最后根據(jù)正弦函數(shù)性質(zhì)求最大值.
試題解析:(1)由正弦定理得,
∴,∴,即
因?yàn)?/span>,則.
(2)由正弦定理
∴, , ,
∴周長(zhǎng)
∵,∴
∴當(dāng)即時(shí)
∴當(dāng)時(shí), 周長(zhǎng)的最大值為.
【題型】解答題
【結(jié)束】
18
【題目】經(jīng)調(diào)查,3個(gè)成年人中就有一個(gè)高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國(guó)際衛(wèi)生組織對(duì)大量不同年齡的人群進(jìn)行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:
其中: , ,
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;(的值精確到0.01)
(3)若規(guī)定,一個(gè)人的收縮壓為標(biāo)準(zhǔn)值的0.9~1.06倍,則為血壓正常人群;收縮壓為標(biāo)準(zhǔn)值的1.06~1.12倍,則為輕度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.12~1.20倍,則為中度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.20倍及以上,則為高度高血壓人群.一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,長(zhǎng)軸長(zhǎng)為.
(1)求橢圓的方程;
(2)點(diǎn)是以長(zhǎng)軸為直徑的圓上一點(diǎn),圓在點(diǎn)處的切線交直線于點(diǎn),求證:過(guò)點(diǎn)且垂直于直線的直線過(guò)橢圓的右焦點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示,則下列判斷正確的是( 。
A. 函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱
B. 函數(shù)的圖象關(guān)于直線對(duì)稱
C. 函數(shù)的最小正周期為
D. 當(dāng)時(shí),函數(shù)的圖象與直線圍成的封閉圖形面積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一圓經(jīng)過(guò)點(diǎn),,且它的圓心在直線上.
(I)求此圓的方程;
(II)若點(diǎn)為所求圓上任意一點(diǎn),且點(diǎn),求線段的中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)是所在平面內(nèi)一點(diǎn),下列說(shuō)法正確的是( )
A.若,則的形狀為等邊三角形
B.若,則點(diǎn)是邊的中點(diǎn)
C.過(guò)任作一條直線,再分別過(guò)頂點(diǎn)作的垂線,垂足分別為,若恒成立,則點(diǎn)是的垂心
D.若則點(diǎn)在邊的延長(zhǎng)線上
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,曲線,曲線,點(diǎn),以極點(diǎn)為原點(diǎn),極軸為軸正半軸建立直角坐標(biāo)系.
(1)求曲線和的直角坐標(biāo)方程;
(2)過(guò)點(diǎn)的直線交于點(diǎn),交于點(diǎn),若,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱臺(tái)中, 底面,平面平面為的中點(diǎn).
(1)證明: ;
(2)若,且,求二面角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com