精英家教網 > 高中數學 > 題目詳情

已知函數的圖像與函數h(x)=x++2的圖像關于點A(0,1)對稱.
(1) 求的解析式;
(2) 若,且g(x)在區(qū)間[0,2]上為減函數,求實數a的取值范圍.

(1); (2)

解析試題分析:(1) 先設函數的圖象上任意一點坐標為,求點關于點對稱的點的坐標為,則點應在函數圖象上,點坐標代入函數即得的解析式;(2)由(1)知,由題意易得實數a的取值范圍.
試題解析:(1)設函數的圖象上任意一點坐標為,
則點關于點對稱的點的坐標為,       2分
那么點應在函數圖象上,所以,
的解析式為 .        6分
(2) 由,       10分
在區(qū)間[0,2]上為減函數,則,即.       14分
考點:1、關于某點對稱的函數解析式的求法;2、二次函數的性質.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知某公司生產品牌服裝的年固定成本為10萬元,每生產千件,須另投入2.7萬元,設該公司年內共生產品牌服裝千件并全部銷售完,每千件的銷售收入為萬元,且
(1)寫出年利潤(萬元)關于年產量(千件)的函數解析式;
(2)當年產量為多少千件時,該公司在這一品牌服裝的生產中所獲年利潤最大?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

統計表明:某種型號的汽車在勻速行駛中每小時的耗油量(升)關于行駛速度(千米/每小時)的函數解析式可以表示為,已知甲、乙兩地相距100千米.
(1)當汽車以40千米/小時的速度行駛時,從甲地到乙地要耗油多少升?
(2)當汽車以多大速度行駛時,從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)若上為增函數,求實數的取值范圍;
(Ⅱ)當時,方程有實根,求實數的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某跳水運動員在一次跳水訓練時的跳水曲線為如圖所示的拋物線一段,已知跳水板長為2m,跳水板距水面的高為3m,=5m,=6m,為安全和空中姿態(tài)優(yōu)美,訓練時跳水曲線應在離起跳點m()時達到距水面最大高度4m,規(guī)定:以為橫軸,為縱軸建立直角坐標系.

(1)當=1時,求跳水曲線所在的拋物線方程;
(2)若跳水運動員在區(qū)域內入水時才能達到壓水花的訓練要求,求達到壓水花的訓練要求時的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知一家公司生產某種產品的年固定成本為10萬元,每生產1千件該產品需另投入2.7萬元,設該公司一年內生產該產品千件并全部銷售完,每千件的銷售收入為萬元,且
(Ⅰ)寫出年利潤(萬元)關于年產量(千件)的函數解析式;
(Ⅱ)年產量為多少千件時,該公司在這一產品的產銷過程中所獲利潤最大.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知為函數圖象上一點,為坐標原點,記直線的斜率
(1)若函數在區(qū)間上存在極值,求實數的取值范圍;
(2)當 時,不等式恒成立,求實數的取值范圍;
(3)求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若在定義域上為增函數,求實數的取值范圍;
(2)求函數在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知正項數列中,,點在拋物線上;數列中,點在過點(0, 1),以為斜率的直線上。
(1)求數列的通項公式;
(2)若   , 問是否存在,使成立,若存在,求出值;若不存在,說明理由;
(3)對任意正整數,不等式恒成立,求正數的取值范圍。

查看答案和解析>>

同步練習冊答案