已知某公司生產(chǎn)品牌服裝的年固定成本為10萬元,每生產(chǎn)千件,須另投入2.7萬元,設該公司年內共生產(chǎn)品牌服裝千件并全部銷售完,每千件的銷售收入為萬元,且
(1)寫出年利潤(萬元)關于年產(chǎn)量(千件)的函數(shù)解析式;
(2)當年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲年利潤最大?

(1);(2)9.

解析試題分析:(1)年利潤=銷售總收入-總成本,所以,由于是分段函數(shù),所以也是分段函數(shù);(2)這是一個求分段函數(shù)最大值的問題,通常要先求出各段中的最大值,然后再比較這兩個值,其中較大的一個即為所求,在各段求最大值時,要根據(jù)函數(shù)特點,適當選擇方法,如利用基本不不等式,配方,導數(shù)等.
試題解析:(1)由題意得,

(2)①當時,

 ,∴當時,,則遞增;當時,,則遞減;
∴當時,取最大值萬元.
②當時,
當且僅當,即取最大值38.
綜上,當年產(chǎn)量為9千件時,該公司在這一品牌服裝的生產(chǎn)中所獲年利潤最大.
考點:函數(shù)在實際問題中的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

求值:
(1)
(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),如果函數(shù)恰有兩個不同的極值點,,且.
(Ⅰ)證明:;
(Ⅱ)求的最小值,并指出此時的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)若的值域;
(Ⅱ)若存在實數(shù),當恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

“城中觀!笔墙陙韲鴥群芏啻笾行统鞘袃葷乘碌默F(xiàn)象,究其原因,除天氣因素、城市規(guī)劃等原因外,城市垃圾雜物也是造成內澇的一個重要原因。暴雨會沖刷城市的垃圾雜物一起進入下水道,據(jù)統(tǒng)計,在不考慮其它因素的條件下,某段下水道的排水量V(單位:立方米/小時)是雜物垃圾密度x(單位:千克/立方米)的函數(shù)。當下水道的垃圾雜物密度達到2千克/立方米時,會造成堵塞,此時排水量為0;當垃圾雜物密度不超過0.2千克/立方米時,排水量是90立方米/小時;研究表明,時,排水量V是垃圾雜物密度x的一次函數(shù)。
(Ⅰ)當時,求函數(shù)V(x)的表達式;
(Ⅱ)當垃圾雜物密度x為多大時,垃圾雜物量(單位時間內通過某段下水道的垃圾雜物量,單位:千克/小時)可以達到最大,求出這個最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為實數(shù),函數(shù)。
(1)若,求的取值范圍;
(2)求的最小值;
(3)設函數(shù),直接寫出(不需給出演算步驟)不等式的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知的值域為集合,的定義域為集合,其中。(1)當,求;(2)設全集為R,若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知冪函數(shù)為偶函數(shù),且在區(qū)間上是單調增函數(shù)
(1)求函數(shù)的解析式;
(2)設函數(shù),其中.若函數(shù)僅在處有極值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的圖像與函數(shù)h(x)=x++2的圖像關于點A(0,1)對稱.
(1) 求的解析式;
(2) 若,且g(x)在區(qū)間[0,2]上為減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案