【題目】某醫(yī)院為篩查某種疾病,需要檢驗血液是否為陽性,現(xiàn)有份血液樣本,有以下兩種檢驗方式:①逐份檢驗,列需要檢驗次;②混合檢驗,將其)份血液樣本分別取樣混合在一起檢驗.若檢驗結(jié)果為陰性,這份的血液全為陰性,因而這份血液樣本只要檢驗一次就夠了,如果檢驗結(jié)果為陽性,為了明確這份血液究竟哪幾份為陽性,就要對這份再逐份檢驗,此時這份血液的檢驗次數(shù)總共為.假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨立的,且每份樣本是陽性結(jié)果的概率為.

1)假設(shè)有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗的方式,求恰好經(jīng)過3次檢驗就能把陽性樣本全部檢驗出來的概率.

2)現(xiàn)取其中)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.

(i)運用概率統(tǒng)計的知識,若,試求關(guān)于的函數(shù)關(guān)系式

(ii)若,且采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)期望值更少,求的最大值.

參考數(shù)據(jù):,.

【答案】(1);(2)(i);(ii的最大值為8

【解析】

1)結(jié)合題意,由排列組合知識及概率公式即可得解;

2)先由已知條件求得關(guān)于的函數(shù)關(guān)系式,再利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再結(jié)合函數(shù)性質(zhì)即可得解.

1)記恰好經(jīng)過3次檢驗就能把陽性樣本全部檢驗出來為事件,

.

2)(i的取值為1,,

所以,

,得,所以.

ii,,所以,即.

設(shè),,

當(dāng)時,上單調(diào)遞增;

當(dāng)時,,上單調(diào)遞減.

,

所以的最大值為8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)設(shè),當(dāng)時,對任意,存在,使,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】PM2.5是空氣質(zhì)量的一個重要指標(biāo),我國PM2.5標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即PM2.5日均值在35μg/m3以下空氣質(zhì)量為一級,在35μg/m375μg/m3之間空氣質(zhì)量為二級,在75μg/m3以上空氣質(zhì)量為超標(biāo).如圖是某市2019121日到10PM2.5日均值(單位:μg/m3)的統(tǒng)計數(shù)據(jù),則下列敘述不正確的是(

A.10天中,125日的空氣質(zhì)量超標(biāo)

B.10天中有5天空氣質(zhì)量為二級

C.5日到10日,PM2.5日均值逐漸降低

D.10天的PM2.5日均值的中位數(shù)是47

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自湖北爆發(fā)新型冠狀病毒肺炎疫情以來,湖北某市醫(yī)護人員和醫(yī)療、生活物資嚴(yán)重匱乏,全國各地紛紛馳援.某運輸隊接到從武漢送往該市物資的任務(wù),該運輸隊有8輛載重為6tA型卡車,6輛載重為10tB型卡車,10名駕駛員,要求此運輸隊每天至少運送240t物資.已知每輛卡車每天往返的次數(shù)為A型卡車5次,B型卡車4次,每輛卡車每天往返的成本A型卡車1200元,B型卡車1800元,則每天派出運輸隊所花的成本最低為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國著名數(shù)學(xué)家華羅庚先生曾說:數(shù)缺形時少直觀,形缺數(shù)時難入微,數(shù)形結(jié)合百般好,隔裂分家萬事休.在數(shù)學(xué)的學(xué)習(xí)和研究中,常用函數(shù)的圖象研究函數(shù)的性質(zhì),也常用函數(shù)的解析式來琢磨函數(shù)的圖象特征.如函數(shù)的圖象大致為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由甲、乙、丙三個人組成的團隊參加某項闖關(guān)游戲,第一關(guān)解密碼鎖,3個人依次進行,每人必須在1分鐘內(nèi)完成,否則派下一個人.3個人中只要有一人能解開密碼鎖,則該團隊進入下一關(guān),否則淘汰出局.根據(jù)以往100次的測試,分別獲得甲、乙解開密碼鎖所需時間的頻率分布直方圖.

(1)若甲解開密碼鎖所需時間的中位數(shù)為47,求a、b的值,并分別求出甲、乙在1分鐘內(nèi)解開密碼鎖的頻率;

(2)若以解開密碼鎖所需時間位于各區(qū)間的頻率代替解開密碼鎖所需時間位于該區(qū)間的概率,并且丙在1分鐘內(nèi)解開密碼鎖的概率為0.5,各人是否解開密碼鎖相互獨立.

求該團隊能進入下一關(guān)的概率;

該團隊以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目X的數(shù)學(xué)期望達(dá)到最小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正三角形的邊長為,將它沿高折疊,使點與點間的距離為,則四面體外接球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為).

(I)求直線的極坐標(biāo)方程及曲線的直角坐標(biāo)方程;

(Ⅱ)已知是直線上的一點,是曲線上的一點, ,,若的最大值為2,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為,過作兩條直線分別與圓相切于,且為直角三角形. 又知橢圓上的點與圓上的點的最大距離為.

1)求橢圓及圓的方程;

2)若不經(jīng)過點的直線(其中)與圓相切,且直線與橢圓交于,求的周長.

查看答案和解析>>

同步練習(xí)冊答案