【題目】函數(shù)f(x)=ax3﹣3x+1 對于x∈[﹣1,1]總有f(x)≥0成立,則a 的取值范圍為( )
A.[2,+∞)
B.[4,+∞)
C.{4}
D.[2,4]
【答案】C
【解析】解:①當(dāng)x=0時,f(x)=1≥0,對于a∈R皆成立.
②當(dāng)0<x≤1時,若總有f(x)≥0,則ax3﹣3x+1≥0,∴ ,
令g(x)= ,g′(x)= = ,令g′(x)=0,解得x= .
當(dāng)0 時,g′(x)>0;當(dāng) 時,g′(x)<0.
∴g(x)在x= 時取得最大值,g( )=4,∴a≥4.
③當(dāng)﹣1≤x<0時,若總有f(x)=0,則 ax3﹣3x+1≥0,∴a≤ .
令h(x)= ,則h′(x)= ≥0,
∴h(x)在[﹣1,0)上單調(diào)遞增,
∴當(dāng)x=﹣1時,h(x)取得最小值,h(﹣1)=4,∴a≤4.
由①②③可知:若函數(shù)f(x)=ax3﹣3x+1 對于x∈[﹣1,1]總有f(x)≥0成立,則a必須滿足 ,解得a=4.
∴a 的取值范圍為{4}.
故選C.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)的極值的相關(guān)知識可以得到問題的答案,需要掌握極值反映的是函數(shù)在某一點附近的大小情況.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個化肥廠生產(chǎn)甲、乙兩種混合肥料,生產(chǎn)1車皮甲種肥料的主要原料是磷酸鹽4t,硝酸鹽18t;生產(chǎn)1車乙種肥料的主要原料是磷酸鹽1t、硝酸鹽15t.現(xiàn)庫存磷酸鹽10t、硝酸鹽66t.已知生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤為10000元;生產(chǎn)1車皮乙種肥料,產(chǎn)生的利潤為5000元.那么分別生產(chǎn)甲、乙兩種肥料各多少車皮,能夠產(chǎn)生最大利潤?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中, 是拋物線的焦點, 是拋物線上的任意一點,當(dāng)位于第一象限內(nèi)時, 外接圓的圓心到拋物線準(zhǔn)線的距離為.
(1)求拋物線的方程;
(2)過的直線交拋物線于兩點,且,點為軸上一點,且,求點的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還升, 升, 升,1斗為10升,則下列判斷正確的是( )
A. , , 依次成公比為2的等比數(shù)列,且
B. , , 依次成公比為2的等比數(shù)列,且
C. , , 依次成公比為的等比數(shù)列,且
D. , , 依次成公比為的等比數(shù)列,且
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論在上的單調(diào)性;
(2)是否存在實數(shù),使得在上的最大值為,若存在,求滿足條件的的個數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a為實數(shù),f(x)=(x2﹣4)(x﹣a).
(1)求導(dǎo)數(shù)f′(x);
(2)若f′(﹣1)=0,求f(x)在[﹣2,2]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中, , 底面, ,且.
(1)若為上一點,且,證明:平面平面.
(2)若為棱上一點,且平面,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為(﹣1,1),且同時滿足下列條件:f(1﹣a)+f(1﹣a2)<0.求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=sin(x+1) ﹣ cos(x+1) ,則f(1)+f(2)+f(3)+…+f(2011)=( )
A.2
B.
C.﹣
D.0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com