1.袋子中裝有大小相同的6個小球,2紅1黑3白,現(xiàn)從中有放回的隨機(jī)摸球2此,每次摸出1個小球,則2次摸球顏色不同的概率是( 。
A.$\frac{5}{9}$B.$\frac{2}{3}$C.$\frac{11}{18}$D.$\frac{13}{18}$

分析 2次摸球顏色不同的對立事件是2次摸球顏色相同,由此能求出2次摸球顏色不同的概率.

解答 解:2次摸球顏色不同的對立事件是2次摸球顏色相同,
∴2次摸球顏色不同的概率:
p=1-$\frac{1}{3}×\frac{1}{3}-\frac{1}{6}×\frac{1}{6}-\frac{1}{2}×\frac{1}{2}$=$\frac{11}{18}$.
故選:C.

點(diǎn)評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意對立事件概率計算公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.集合A={x|-1<x<3},集合B={x|$\frac{1}{3}<{3}^{x}<9$},則A∩B=( 。
A.(1,2)B.(-1,2)C.(1,3)D.(-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)=ex-lnx在x=x0處的切線與x軸平行,若x0∈D,則D可能是( 。
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,1)C.(1,$\frac{3}{2}$)D.($\frac{3}{2}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知△ABC中,內(nèi)角A,B,C所對的對邊分別為a,b,c,且a+b=$\sqrt{3}c$,2sin2C=3sinAsinB.
(1)求∠C;
(2)若S△ABC=$\sqrt{3}$,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=|2x+1|-a2+$\frac{3a}{2}$,g(x)=|x|.
(I)當(dāng)a=0時,解不等式f(x)-g(x)≥0;
(2)若存在x∈R,使得f(x)≤g(x)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,直三棱柱ABC-A1B1C1中,AB=BC,AC=AA1=2$\sqrt{2}$,E為A1C上一點(diǎn),且A1C=4EC,F(xiàn)為AC的中點(diǎn).
(1)證明:A1C⊥平面BEF;
(2)若平面A1BC⊥平面A1B1BA,求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={x|x≥0},B={-1,0,1},則A∩B=(  )
A.{1}B.{0,1}C.{-1,0}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知正三棱柱ABC-A1B1C1,底邊與側(cè)棱長均為1,點(diǎn)E、F是側(cè)棱上的中點(diǎn)
(1)求AF與底面ABC所成角的正切值;
(2)求四棱錐A-BEFC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某中學(xué)領(lǐng)導(dǎo)采用系統(tǒng)抽樣方法,從該校某年級全體1200名學(xué)生中抽取80名學(xué)生做視力檢查.現(xiàn)將1200名學(xué)生從1到1200進(jìn)行編號,在1~15中隨機(jī)抽取一個數(shù),如果抽到的是6,則從46~60這15個數(shù)中應(yīng)抽取的數(shù)是( 。
A.47B.48C.51D.54

查看答案和解析>>

同步練習(xí)冊答案