10.已知函數(shù)f(x)=ax+x2-xlna-b(b∈R,a>0且a≠1),e是自然對(duì)數(shù)的底數(shù),
(1)討論函數(shù)f(x)在(0,+∞)上的單調(diào)性
(2)當(dāng)a>1時(shí),若存在x0∈[-1,1],使得f(x0)≤e-1,求實(shí)數(shù)b的取值范圍.(參考公式:(ax)'=axlna)

分析 (1)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(2)求出函數(shù)的導(dǎo)數(shù),通過討論x的范圍,求出f(x)的最小值,得到關(guān)于b的不等式,解出即可.

解答 解:(1)f'(x)=axlna+2x-lna=2x+(ax-1)lna,
當(dāng)a>1時(shí),lna>0,當(dāng)x∈(0,+∞)時(shí),2x>0,ax>1,∴ax-1>0,
所以f'(x)>0,故函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
當(dāng)0<a<1時(shí),lna<0,當(dāng)x∈(0,+∞)時(shí),2x>0,ax<1,∴ax-1<0,
所以f'(x)>0,故函數(shù)f(x)在(0,+∞)上單調(diào)遞增,
綜上,f(x)在(0,+∞)上單調(diào)遞增,
(2)f'(x)=axlna+2x-lna=2x+(ax-1)lna,
①當(dāng)x>0時(shí),由a>1,可知ax-1>0,lna>0,∴f'(x)>0;
②當(dāng)x<0時(shí),由a>1,可知ax-1<0,lna>0,∴f'(x)<0;
③當(dāng)x=0時(shí),f'(x)=0,∴f(x)在[-1,0]上遞減,在[0,1]上遞增,
∴當(dāng)x∈[-1,1]時(shí),f(x)min=f(0)=1-b,
若存在x0∈[-1,1],使得f(x0)≤e-1,
即f(x)min≤e-1即可,故1-b≤e-1,
解得:b≥2-e.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有委米依垣內(nèi)角,下周六尺,高五尺.問:積及為米幾何?”其意思為:“在屋內(nèi)墻角處堆放米(如圖,米堆為一個(gè)圓錐的四分之一),米堆底部的弧長為6尺,米堆的高為5尺,問堆放的米有多少斛?”已知1斛米的體積約為1.6立方尺,圓周率約為3,估算出堆放的米約有12.5斛.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若函數(shù)f(x)=cos(2x+φ)為R上的偶函數(shù),則φ的值可以是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知x,y滿足條件$\left\{\begin{array}{l}1≤x+y≤3\\-1≤x-y≤1\end{array}\right.$
(1)求2x-y的最小值;
(2)求x2+y2的最小值;
(3)求$\frac{y+1}{x+1}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列求導(dǎo)運(yùn)算錯(cuò)誤的是( 。
A.(x2+4)′=2x+4B.${({{{log}_2}x})^′}=\frac{1}{xln2}$C.(cosx)′=-sinxD.${({\frac{1}{x}})^′}=-\frac{1}{x^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知$\overrightarrow a$=(-2,2),$\overrightarrow b$=(1,0),若向量$\overrightarrow c$=(1,-2)使$\overrightarrow a$-λ$\overrightarrow b$共線,則λ=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知圓M經(jīng)過三點(diǎn)A(0,$\sqrt{3}$),B(6,$\sqrt{3}$),C(3,4$\sqrt{3}$),且交y軸于E、F兩點(diǎn),則|EF|的值為( 。
A.2$\sqrt{3}$B.3C.4$\sqrt{3}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.用秦九韶算法求多項(xiàng)式f(x)=9x6+7x5+3x4+2x2-5,當(dāng)x=4時(shí)的值時(shí),先算的是( 。
A.4×4=16B.9×4=36C.4×4×4=64D.9×4+7=43

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c.
(1)若a、b、c成等比數(shù)列,且$cosB=\frac{3}{5}$,求cotA+cotC的值;
(2)若A、B、C成等差數(shù)列,且b=2,求△ABC 的周長l的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案