4.設(shè)H、P是△ABC所在平面上異于A、B、C的兩點(diǎn),用$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrow{h}$分別表示向量$\overrightarrow{PA}$,$\overrightarrow{PB}$,$\overrightarrow{PC}$,$\overrightarrow{PH}$,已知$\overrightarrow{a}•\overrightarrow$+$\overrightarrow{c}•\overrightarrow{h}$=$\overrightarrow•\overrightarrow{c}$+$\overrightarrow{a}•$$\overrightarrow{h}$=$\overrightarrow{c}•\overrightarrow{a}$+$\overrightarrow•\overrightarrow{h}$,$|{\overrightarrow{AH}}|=1$,$|{\overrightarrow{BH}}|=\sqrt{2}$,$|{\overrightarrow{BC}}|=\sqrt{3}$,點(diǎn)O是△ABC外接圓的圓心,則△AOB,△BOC,△AOC的面積之比為1:$\sqrt{3}$:2.

分析 根據(jù)平面向量的數(shù)量積運(yùn)算律可得H為△ABC的垂心,根據(jù)三角形相似列方程可得出△的三個(gè)內(nèi)角,從而得出三個(gè)圓心角的大小,故可得出三個(gè)小三角形的面積比.

解答 解:由題知$\overrightarrow{PA}•\overrightarrow{PB}+\overrightarrow{PC}•\overrightarrow{PH}=\overrightarrow{PB}•\overrightarrow{PC}+\overrightarrow{PA}•\overrightarrow{PH}$$⇒\overrightarrow{PB}•(\overrightarrow{PA}-\overrightarrow{PC})+\overrightarrow{PH}•(\overrightarrow{PC}-\overrightarrow{PA})=0⇒\overrightarrow{CA}•\overrightarrow{HB}=0$,
同理可得$\overrightarrow{CB}•\overrightarrow{HA}=0$,故H是△ABC的垂心,
設(shè)∠CAD=θ,則AE=cosθ,EH=sinθ,$BD=\sqrt{2}cosθ,DH=\sqrt{2}sinθ$,
由$\frac{CD}{HE}=\frac{AD}{AE}⇒CD=sinθ•\frac{{1+\sqrt{2}sinθ}}{cosθ}$,
∴BC=BD+CD=$\sqrt{2}cosθ+\frac{{sinθ+\sqrt{2}{{sin}^2}θ}}{cosθ}=\sqrt{3}$,
即$\sqrt{3}cosθ-sinθ=\sqrt{2}⇒cos(θ+\frac{π}{6})=\frac{{\sqrt{2}}}{2}$,∴$θ=\frac{π}{12}$,∴$C=\frac{5π}{12}$,
又$AD=1+\sqrt{2}sinθ$,$BD=\sqrt{2}cosθ$,則$AD-BD=1+2sin(θ-\frac{π}{4})=0$,∴$B=\frac{π}{4}$,
從而$A=\frac{π}{3}$,于是$∠AOB=2∠C=\frac{5π}{6},∠BOC=2∠A=\frac{2π}{3},∠AOC=2∠B=\frac{π}{2}$,
故${S_{△AOB}}:{S_{△BOC}}:{S_{△AOC}}=sin\frac{5π}{6}:sin\frac{2π}{3}:sin\frac{π}{2}=\frac{1}{2}:\frac{{\sqrt{3}}}{2}:1=1:\sqrt{3}:2$,
故答案為:1:$\sqrt{3}$:2.

點(diǎn)評(píng) 本題考查了平面向量的再幾何中的應(yīng)用,三角形的幾何計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù)f(x)=ax+sinx的圖象在某兩點(diǎn)處的切線相互垂直,則a的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.不等式2x2-3x+1≥0的解集是$({-∞,\frac{1}{2}}]∪[{1,+∞})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.函數(shù)f(x)=2sin(ωx+φ)(ω>0,且$|φ|<\frac{π}{2})$的部分圖象如圖所示,則f(0)的值為$-\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.三角形ABC中,角A、B、C所對(duì)邊分別為a,b,c,且a2+c2=b2+ac.
(1)若cosA=$\frac{1}{3}$,求sinC的值;
(2)若b=$\sqrt{7}$,a=3c,求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知D是直角ABC斜邊BC上一點(diǎn),AC=$\sqrt{3}$DC,
(1)若∠DAC=30°求角B的大小;
(II)若BD=2DC,且 AD=2$\sqrt{2}$,求DC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在三棱錐A-BCD中,AB=2$\sqrt{6}$,△ACD和△BCD均是邊長(zhǎng)為4的等邊三角形,則三棱錐外接球的表面積為$\frac{80π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知兩函數(shù)$f(x)=(x-a)(x-b)(x-c),g(x)=\sqrt{3}(x-b)(x-c)$,a<b<c,f′(a)=f′(c)
(1)求證:三數(shù)a、b、c成等差數(shù)列;
(2)$F(x)=\left\{{\begin{array}{l}{f(x),x≤b}\\{g(x),x>b}\end{array}}\right.$假設(shè)對(duì)一切實(shí)數(shù)x,F(xiàn)(x)≤f(x)恒成立,函數(shù)F(x)取極大值和極小值時(shí)對(duì)應(yīng)點(diǎn)分別為M和N,
①求直線MN的斜率;
②記函數(shù)G(x)=f(x)-g(x),如果滿足集合{y|y=G(x),b≤x≤c}={y|y=G(x),b≤x≤0}的最大實(shí)數(shù)b的值是B,求實(shí)數(shù)B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖是函數(shù)f(x)的部分圖象,則f(x)的解析式可能為( 。
A.f(x)=ex-e-xB.f(x)=-xcosxC.f(x)=x2+xsinxD.f(x)=(2x+sinx)cosx

查看答案和解析>>

同步練習(xí)冊(cè)答案