【題目】已知函數(shù).
(1)若,求函數(shù)的極值和單調(diào)區(qū)間;
(2)若在區(qū)間上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
【答案】(1)時(shí), 有極小值為. 的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;
(2).
【解析】試題分析:(1)求函數(shù)的導(dǎo)數(shù),令導(dǎo)數(shù)等于零,解方程,再求出函數(shù)的導(dǎo)數(shù)和駐點(diǎn),然后列表討論,求函數(shù)的單調(diào)區(qū)間和極值;(2)若在區(qū)間上存在一點(diǎn),使得成立,其充要條件是在區(qū)間上的最小值小于即可.利用導(dǎo)數(shù)研究函數(shù)在閉區(qū)間上的最小值,先求出導(dǎo)函數(shù),然后討論研究函數(shù)在上的單調(diào)性,將的各極值與其端點(diǎn)的函數(shù)值比較,其中最小的一個(gè)就是最小值.
試題解析:(1)當(dāng), ,
令,得,
又的定義域?yàn)?/span>,由得,由,得,
所以時(shí), 有極小值為,
的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(2),且,令,得到.若在區(qū)間上存在一點(diǎn),使得成立,即在區(qū)間上的最小值小于.
當(dāng),即時(shí), 恒成立,即在區(qū)間上單調(diào)遞減,
故在區(qū)間上的最小值為.
由,得,即.
當(dāng),即時(shí),
①若,則對(duì)成立,所以在區(qū)間上單調(diào)遞減,
則在區(qū)間上的最小值為.
顯然, 在區(qū)間上的最小值小于不成立.
②若,即時(shí),則有
所以在區(qū)間上的最小值為,
由,得,解得,即,
綜上,由①②可知:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校大一新生中的6名同學(xué)打算參加學(xué)校組織的“演講團(tuán)”、“吉他協(xié)會(huì)”等五個(gè)社團(tuán),若每名同學(xué)必須參加且只能參加1個(gè)社團(tuán)且每個(gè)社團(tuán)至多兩人參加,則這6個(gè)人中沒有人參加“演講團(tuán)”的不同參加方法數(shù)為( )
A. 3600 B. 1080 C. 1440 D. 2520
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若在上是單調(diào)函數(shù),求實(shí)數(shù)取值范圍.
(2)求在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)如果對(duì)于任意的,都有成立,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)求函數(shù)在上的最小值;
(Ⅱ)設(shè)函數(shù),若函數(shù)的零點(diǎn)有且只有一個(gè),求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國個(gè)人所得稅法》規(guī)定,公民全月工資所得不超過3500元的部分不必納稅,超過3500元的部分為全月應(yīng)納稅所得額。此項(xiàng)稅款按下表分段累計(jì)計(jì)算:
全月應(yīng)納稅所得額 | 稅率(%) |
不超過1500元的部分 | 3 |
超過1500元至4500元的部分 | 10 |
超過4500元至9000元的部分 | 20 |
(1)某人10月份應(yīng)交此項(xiàng)稅款為350元,則他10月份的工資收入是多少?
(2)假設(shè)某人的月收入為元, ,記他應(yīng)納稅為元,求的函數(shù)解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題12分)甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間,他們參加的5項(xiàng)預(yù)賽成績記錄如下:
甲 | 82 | 82 | 79 | 95 | 87 |
乙 | 95 | 75 | 80 | 90 | 85 |
(1)從甲、乙兩人的成績中各隨機(jī)抽取一個(gè),求甲的成績比乙高的概率;
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計(jì)學(xué)的角度考慮,你認(rèn)為選派哪位學(xué)生參加合適?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家商場對(duì)同一種商品開展促銷活動(dòng),對(duì)購買該商品的顧客兩家商場的獎(jiǎng)勵(lì)方案如下:
甲商場:顧客轉(zhuǎn)動(dòng)如圖所示圓盤,當(dāng)指針指向陰影部分(圖中兩個(gè)陰影部分均為扇形,且每個(gè)扇形圓心角均為,邊界忽略不計(jì))即為中獎(jiǎng)·
乙商場:從裝有2個(gè)白球、2個(gè)藍(lán)球和2個(gè)紅球的盒子中一次性摸出1球(這些球除顏色外完全相同),它是紅球的概率是,若從盒子中一次性摸出2球,且摸到的是2個(gè)相同顏色的球,即為中獎(jiǎng).
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)試問:購買該商品的顧客在哪家商場中獎(jiǎng)的可能性大?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四個(gè)物體同時(shí)從某一點(diǎn)出發(fā)向同一個(gè)方向運(yùn)動(dòng),其路程關(guān)于時(shí)間的函數(shù)關(guān)系式分別為, , , ,有以下結(jié)論:
①當(dāng)時(shí),甲走在最前面;
②當(dāng)時(shí),乙走在最前面;
③當(dāng)時(shí),丁走在最前面,當(dāng)時(shí),丁走在最后面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它們一直運(yùn)動(dòng)下去,最終走在最前面的是甲.
其中,正確結(jié)論的序號(hào)為 (把正確結(jié)論的序號(hào)都填上,多填或少填均不得分).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com