【題目】甲、乙、丙、丁四個(gè)物體同時(shí)從某一點(diǎn)出發(fā)向同一個(gè)方向運(yùn)動(dòng),其路程關(guān)于時(shí)間的函數(shù)關(guān)系式分別為, , ,有以下結(jié)論:

當(dāng)時(shí),甲走在最前面;

當(dāng)時(shí),乙走在最前面;

當(dāng)時(shí),丁走在最前面,當(dāng)時(shí),丁走在最后面;

丙不可能走在最前面,也不可能走在最后面;

如果它們一直運(yùn)動(dòng)下去,最終走在最前面的是甲.

其中,正確結(jié)論的序號(hào)為 (把正確結(jié)論的序號(hào)都填上,多填或少填均不得分).

【答案】③④⑤

【解析】試題分析:分別取特值驗(yàn)證命題①②;對(duì)數(shù)型函數(shù)的變化是先快后慢,當(dāng)x=1時(shí)甲、乙、丙、丁四個(gè)物體又重合,從而判斷命題正確;指數(shù)函數(shù)變化是先慢后快,當(dāng)運(yùn)動(dòng)的時(shí)間足夠長(zhǎng),最前面的動(dòng)物一定是按照指數(shù)型函數(shù)運(yùn)動(dòng)的物體,即一定是甲物體;結(jié)合對(duì)數(shù)型和指數(shù)型函數(shù)的圖象變化情況,可知命題正確.

解:路程fix)(i=1,2,34)關(guān)于時(shí)間xx≥0)的函數(shù)關(guān)系是:

,,f3x=x,f4x=log2x+1),

它們相應(yīng)的函數(shù)模型分別是指數(shù)型函數(shù),二次函數(shù),一次函數(shù),和對(duì)數(shù)型函數(shù)模型.

當(dāng)x=2時(shí),f12=3,f22=4命題不正確;

當(dāng)x=4時(shí),f15=31,f25=25,命題不正確;

根據(jù)四種函數(shù)的變化特點(diǎn),對(duì)數(shù)型函數(shù)的變化是先快后慢,當(dāng)x=1時(shí)甲、乙、丙、丁四個(gè)物體又重合,從而可知當(dāng)0x1時(shí),丁走在最前面,當(dāng)x1時(shí),丁走在最后面,

命題正確;

指數(shù)函數(shù)變化是先慢后快,當(dāng)運(yùn)動(dòng)的時(shí)間足夠長(zhǎng),最前面的動(dòng)物一定是按照指數(shù)型函數(shù)運(yùn)動(dòng)的物體,即一定是甲物體,命題正確.

結(jié)合對(duì)數(shù)型和指數(shù)型函數(shù)的圖象變化情況,可知丙不可能走在最前面,也不可能走在最后面,命題正確.

故答案為:③④⑤

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,求函數(shù)的極值和單調(diào)區(qū)間;

(2)若在區(qū)間上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=.

(1)求f(x)的定義域及最小正周期;

(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A,B兩城相距100 km,在兩地之間距Ax km處的D地建一核電站給A,B兩城供電.為保證城市安全,核電站與城市距離不得少于10 km.已知供電費(fèi)用與供電距離的平方和供電量之積成正比,比例系數(shù)λ=0.25.若A城供電量為20億度/月,B城為10億度/月.

(1)求x的取值范圍;

(2)把月供電總費(fèi)用y表示成x的函數(shù);

(3)核電站建在距A城多遠(yuǎn),才能使供電費(fèi)用最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)市政府“綠色出行”的號(hào)召,王老師每個(gè)工作日上下班由自駕車改為選擇乘坐地鐵或騎共享單車這兩種方式中的一種出行.根據(jù)王老師從2017年3月到2017年5月的出行情況統(tǒng)計(jì)可知,王老師每次出行乘坐地鐵的概率是0.4,騎共享單車的概率是0.6.乘坐地鐵單程所需的費(fèi)用是3元,騎共享單車單程所需的費(fèi)用是1元.記王老師在一個(gè)工作日內(nèi)上下班所花費(fèi)的總交通費(fèi)用為X元,假設(shè)王老師上下班選擇出行方式是相互獨(dú)立的.

(I)求X的分布列和數(shù)學(xué)期望;

(II)已知王老師在2017年6月的所有工作日(按22個(gè)工作日計(jì))中共花費(fèi)交通費(fèi)用110元,請(qǐng)判斷王老師6月份的出行規(guī)律是否發(fā)生明顯變化,并依據(jù)以下原則說明理由.

原則:設(shè)表示王老師某月每個(gè)工作日出行的平均費(fèi)用,若,則有95%的把握認(rèn)為王老師該月的出行規(guī)律與前幾個(gè)月的出行規(guī)律相比有明顯變化.(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)),

(1)求函數(shù)單調(diào)區(qū)間;

(2)當(dāng)時(shí),

①求函數(shù)上的值域;

②求證:,其中,.(參考數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B,過點(diǎn)O且斜率為的直線與直線AB相交M,且

(Ⅰ)求證:a=2b;

(Ⅱ)PQ是圓C:(x-2)2+(y-1)2=5的一條直徑,若橢圓E經(jīng)過P,Q兩點(diǎn),求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的通項(xiàng)公式是an.

(1) 判斷是不是數(shù)列{an}中的一項(xiàng);

(2) 試判斷數(shù)列{an}中的項(xiàng)是否都在區(qū)間(0,1)內(nèi);

(3) 在區(qū)間內(nèi)有無數(shù)列{an}中的項(xiàng)?若有,是第幾項(xiàng)?若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一企業(yè)從某條生產(chǎn)線上隨機(jī)抽取100件產(chǎn)品,測(cè)量這些產(chǎn)品的某項(xiàng)技術(shù)指標(biāo)值x,得到如下的頻率分布表:

x

[11,13)

[13,15)

[15,17)

[17,19)

[19,21)

[21,23)

頻數(shù)

2

12

34

38

10

4

(Ⅰ)作出樣本的頻率分布直方圖,并估計(jì)該技術(shù)指標(biāo)值x的平均數(shù)和眾數(shù);

(Ⅱ)若x<13或x≥21,則該產(chǎn)品不合格.現(xiàn)從不合格的產(chǎn)品中隨機(jī)抽取2件,求抽取的2件產(chǎn)品中技術(shù)指標(biāo)值小于13的產(chǎn)品恰有一件的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案