8.已知單調(diào)遞增數(shù)列{an}滿足an=3n-λ•2n(其中λ為常數(shù),n∈N+),則實(shí)數(shù)λ的取值范圍是λ<3.

分析 單調(diào)遞增數(shù)列{an}滿足an=3n-λ•2n(其中λ為常數(shù),n∈N+),可得:an<an+1,化為:λ<$2×(\frac{3}{2})^{n}$,利用數(shù)列的單調(diào)性即可得出.

解答 解:∵單調(diào)遞增數(shù)列{an}滿足an=3n-λ•2n(其中λ為常數(shù),n∈N+),
∴an<an+1,
∴3n-λ•2n<3n+1-λ•2n+1
化為:λ<$2×(\frac{3}{2})^{n}$,
由于數(shù)列$\{2×(\frac{3}{2})^{n}\}$單調(diào)遞增,∴$2×(\frac{3}{2})^{n}$≥$2×\frac{3}{2}$=3.
∴λ<3.
故答案為:λ<3.

點(diǎn)評(píng) 本題考查了遞推關(guān)系的應(yīng)用、數(shù)列的單調(diào)性、不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知f(x)=sinx(sinx+cosx)+cos2x.
(1)求f(x)的最小正周期和最大值;
(2)求f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線y=k(x-1)+2與拋物線x2=4y的位置關(guān)系為( 。
A.相交B.相切C.相離D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,AD⊥平面APB,AD∥BC,AP⊥PB,R、S分別是線段AB、PC的中點(diǎn).
(1)求證:RS∥平面PAD;
(2)若AB=BC=2AD=2AP,點(diǎn)Q在線段AB上,且BQ=3AQ,求證:平面DPQ⊥平面ADQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知圓C:(x-3)2+y2=4,M是圓C的圓心,Q是y軸上的動(dòng)點(diǎn),QA,QB分別切圓C于A,B兩點(diǎn)
(Ⅰ)若Q(0,2),求切線QA,QB的方程
(Ⅱ)求四邊形QAMB面積的最小值
(Ⅲ)若|AB|=$\frac{8\sqrt{2}}{3}$,求直線MQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)為定義在[0,3]上的減函數(shù),則滿足f(2x-1)<f(1)的實(shí)數(shù)x的取值范圍是( 。
A.[0,1]B.(1,2]C.[$\frac{1}{2}$,2]D.(1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,若頂點(diǎn)B、C的坐標(biāo)分別是(-a,0)和(a,0),其中a>0,G為△ABC的重心(三角形三條中線的交點(diǎn)),若|AG|=2,則點(diǎn)G的軌跡方程是( 。
A.x2+y2=1(y≠0)B.x2+y2=4(y≠0)C.x2+y2=9(y≠0)D.x2+y2=a2(y≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.把邊長為2的正方形ABCD沿對(duì)角線BD折起,使得平面ABD⊥平面CBD.則異面直線AD,BC所成的角為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,三個(gè)半徑均為r的小球放在一個(gè)半球形的碗中,若三個(gè)小球的最高點(diǎn)恰好與碗的上沿處于同一水平面.已知這個(gè)碗的半徑R=3+$\sqrt{21}$,則r=3.

查看答案和解析>>

同步練習(xí)冊(cè)答案