14.求函數(shù)y=sinx+$\sqrt{3}$cosx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的值域.

分析 化函數(shù)y=sinx+$\sqrt{3}$cosx為一個角的一個三角函數(shù)的形式,然后根據(jù)函數(shù)的單調(diào)性求解即可.

解答 解:函數(shù)y=sinx+$\sqrt{3}$cosx=2sin(x+$\frac{π}{3}$),
∵x∈[-$\frac{π}{2}$,$\frac{π}{2}$],
∴x+$\frac{π}{3}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
x+$\frac{π}{3}$=-$\frac{π}{6}$時函數(shù)取得最小值:-1.
x+$\frac{π}{3}$=$\frac{π}{2}$時函數(shù)取得最大值:2.
∴y∈[-1,2].
故答案為:[-1,2].

點(diǎn)評 本題考查了三角函數(shù)的化簡與求值,需要明確自變量的范圍以及函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,D是BC的中點(diǎn),E是AD的中點(diǎn),若$\overrightarrow{CE}$=λ1$\overrightarrow{AB}$+λ2$\overrightarrow{AC}$,則λ12=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若α是銳角三角形的一個內(nèi)角,且cos($\frac{3}{2}$π+α)=$\frac{1}{3}$,則cosα=$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若an=3an-1+3n-1,n≥2,n∈N+,a1=5,若{$\frac{{a}_{n}+t}{{3}^{n}}$}是公差為1的等差數(shù)列,則t=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知△ABC中,三條邊的邊長之比為6:8:9,則△ABC一定是銳角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在三角形ABC中,∠A=45°,∠B=90°,sinC=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)數(shù)列{an}的各項(xiàng)均為正數(shù),前n項(xiàng)和Sn滿足Sn=$\frac{1}{6}$(an2+3an-4),則an=3n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=1-an(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{{a_n}+1}}-\frac{1}{{{a_{n+1}}-1}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,求證:對于任意的n∈N*,2n-$\frac{1}{4}<{T_n}$≤2n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某年數(shù)學(xué)競賽請來一位來自X星球的選手參加填空題比賽,共10道題目,這位選手做題有一個古怪的習(xí)慣:先從最后一題(第10題)開始往前看,凡是遇到會的題就作答,遇到不會的題目先跳過(允許跳過所有的題目),一直看到第1題;然后從第1題開始往后看,凡是遇到先前未答的題目就隨便寫個答案,遇到先前已答的題目則跳過(例如,他可以按照9,8,7,4,3,2,1,5,6,10的次序答題),這樣所有的題目均有作答,設(shè)這位選手可能的答題次序有n種,則n的值為( 。
A.512B.511C.1024D.1023

查看答案和解析>>

同步練習(xí)冊答案