分析 (1)在△ABC中使用余弦定理求出AB;
(2)在△ACD中,使用正弦定理求出.
解答 解:(1)在△ABC中,由余弦定理得:
AB2=AC2+BC2-2AC•BCcos∠ACB=16.
∴AB=4.
(2)AD=$\frac{1}{4}AB$=1.
∵∠ACB與∠D互補(bǔ),∴cosD=-cos∠ACB=-$\frac{1}{3}$.
∴sinD=$\frac{2\sqrt{2}}{3}$.
在△ACD中,由正弦定理得:$\frac{AC}{sinD}=\frac{AD}{sin∠ACD}$,
∴sin∠ACD=$\frac{AD•sinD}{AC}$=$\frac{2\sqrt{2}}{3×2\sqrt{3}}=\frac{\sqrt{6}}{9}$.
點(diǎn)評(píng) 本題考查了正弦定理,余弦定理解三角形,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 3 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
2015年中國(guó)十佳宜居城市 | 2015年十佳最美麗城市 | ||||
排名 | 城市 | 得分 | 排名 | 城市 | 得分 |
1 | 深圳 | 90.2 | 1 | 杭州 | 93.7 |
2 | 珠海 | 89.8 | 2 | 拉薩 | 93.5 |
3 | 煙臺(tái) | 88.3 | 3 | 深圳 | 93.3 |
4 | 惠州 | 86.5 | 4 | 青島 | 92.2 |
5 | 信陽(yáng) | 83.1 | 5 | 大連 | 92.0 |
6 | 廈門(mén) | 81.4 | 6 | 銀川 | 91.9 |
7 | 金華 | 79.2 | 7 | 惠州 | 90.6 |
8 | 柳州 | 77.8 | 8 | 哈爾濱 | 90.3 |
9 | 揚(yáng)州 | 75.9 | 9 | 信陽(yáng) | 89.3 |
10 | 九江 | 74.6 | 10 | 煙臺(tái) | 88.8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 4 | C. | 8 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com