A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
分析 求函數(shù)的導(dǎo)數(shù),先求出和y=x+1+b平行的切線方程,建立a,b的關(guān)系,作出不等式組對(duì)應(yīng)的平面區(qū)域,求出對(duì)應(yīng)的面積,利用幾何概型的概率公式進(jìn)行求解即可.
解答 解:y=ex+$\sqrt{a}$的導(dǎo)數(shù)f′(x)=ex,和y=x+1+b平行的切線斜率k=f′(x)=1,
即由ex=1,得x=0,此時(shí)f(0)=1+$\sqrt{a}$,即切點(diǎn)坐標(biāo)為(0,1+$\sqrt{a}$),
對(duì)應(yīng)的切線方程為y-1-$\sqrt{a}$=x,即y=x+1+$\sqrt{a}$,
若曲線C1與C2有交點(diǎn),則1+b≥1+$\sqrt{a}$,即b≥$\sqrt{a}$,
作出對(duì)應(yīng)的不等式如圖:
則正方體OABC的面積S=1,陰影部分的面積S=1-∫${\;}_{0}^{1}$$\sqrt{a}$da=1-$\frac{2}{3}$a${\;}^{\frac{3}{2}}$|${\;}_{0}^{1}$=1-$\frac{2}{3}$=$\frac{1}{3}$,
則曲線C1與C2有交點(diǎn)的概率P=$\frac{\frac{1}{3}}{1}=\frac{1}{3}$,
故選:D.
點(diǎn)評(píng) 本題主要考查幾何概型的概率的計(jì)算,涉及導(dǎo)數(shù)的幾何意義,利用積分求面積,綜合性較強(qiáng),有一定的難度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=sin(x+$\frac{π}{2}$)+1 | B. | y=sin(x-$\frac{π}{2}$)+1 | C. | y=sin(x+$\frac{π}{4}$)+1 | D. | y=sin(x-$\frac{π}{4}$)+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{a}⊥\overrightarrow$ | B. | |$\overrightarrow{a}$|>|$\overrightarrow$| | C. | θ∈(0,$\frac{π}{2}$) | D. | $θ∈(\frac{π}{2},π)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a,b∈R,且a+b>4,則a,b至少有一個(gè)大于2 | |
B. | “?x0∈R,${2^{x_0}}=1$”的否定是“?x∈R,2x≠1” | |
C. | a>1,b>1是ab>1的必要條件 | |
D. | △ABC中,A是最大角,則sin2A>sin2B+sin2C是△ABC為鈍角三角形的充要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com