【題目】設(shè)分別為雙曲線的左、右焦點。若在雙曲線右支上存在點,滿足,且到直線的距離等于雙曲線的實軸長,則該雙曲線的漸近線與拋物線的準(zhǔn)線圍成三角形的面積為( )
A. B.
C. D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在盒子里有大小相同,僅顏色不同的乒乓球共10個,其中紅球4個,白球3個,藍球3個。
(Ⅰ)現(xiàn)從中任取出一球確定顏色后放回盒子里,再取下一個球,重復(fù)以上操作,最多取3次,過程中如果取出藍色球則不再取球,求:
①最多取兩次就結(jié)束的概率;
②整個過程中恰好取到2個白球的概率;
(Ⅱ)若改為從中任取出一球確定顏色后不放回盒子里,再取下一個球。重復(fù)以上操作,最多取3次,過程中如果取出藍色球則不再取球,則設(shè)取球的次數(shù)為隨機變量求的分布列和數(shù)學(xué)期望,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某校高三上學(xué)期期末數(shù)學(xué)考試成績中,隨機抽取了名學(xué)生的成績得到如圖所示的頻率分布直方圖:
(1)根據(jù)頻率分布直方圖,估計該校高三學(xué)生本次數(shù)學(xué)考試的平均分;
(2)若用分層抽樣的方法從分?jǐn)?shù)在和的學(xué)生中共抽取人,該人中成績在的有幾人?
(3)在(2)中抽取的人中,隨機抽取人,求分?jǐn)?shù)在和各人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線上一點到其焦點F的距離為5.
(1)求拋物線C的方程;
(2)設(shè)直線l與拋物線C交于A、B兩點,O為坐標(biāo)原點,若,求證:直線l必過一定點,并求出該定點的坐標(biāo);
(3)過點的直線m與拋物線C交于不同的兩點M、N,若,求直線m的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市隨機抽取部分企業(yè)調(diào)查年上繳稅收情況(單位:萬元),將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),年上繳稅收范圍是 ,樣本數(shù)據(jù)分組為,.
(Ⅰ)求直方圖中的值;
(Ⅱ)如果年上繳稅收不少于萬元的企業(yè)可申請政策優(yōu)惠,若共抽取企業(yè)個,試估計有多少企業(yè)可以申請政策優(yōu)惠;
(Ⅲ)從企業(yè)中任選個,這個企業(yè)年上繳稅收少于萬元的個數(shù)記為 ,求的分布列和數(shù)學(xué)期望.(以直方圖中的頻率作為概率)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P(1,3),Q(1,2).設(shè)過點P的動直線與拋物線y=x2交于A,B兩點,直線AQ,BQ與該拋物線的另一交點分別為C,D.記直線AB,CD的斜率分別為k1,k2.
(1)當(dāng)時,求弦AB的長;
(2)當(dāng)時,是否為定值?若是,求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(為自然對數(shù)的底數(shù)).
(1)若在處的切線過點,求實數(shù)的值;
(2)當(dāng)時,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】邗江中學(xué)高二年級某班某小組共10人,利用寒假參加義工活動,已知參加義工活動次數(shù)為1,2,3的人數(shù)分別為3,3,4.現(xiàn)從這10人中選出2人作為該組代表參加座談會.
(1)記“選出2人參加義工活動的次數(shù)之和為4”為事件,求事件發(fā)生的概率;
(2)設(shè)為選出2人參加義工活動次數(shù)之差的絕對值,求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com