A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{8}$ | D. | $\frac{1}{2}$ |
分析 分別求出偶函數(shù)f(x)在[0,+∞)上單調(diào)遞減,f(2)=0,對于滿足f(k-1)>0的k值的范圍,則使得函數(shù)g(x)=|x-2|-kx+1有兩個不相同的零點的k 的范圍,即可求出概率.
解答 解:∵偶函數(shù)f(x)在[0,+∞)上單調(diào)遞減,f(2)=0,
∴f(k-1)>0時,|k-1|<2,
∴-1<k<3,長度為4;
使得函數(shù)g(x)=|x-2|-kx+1有兩個不同的零點,如圖所示,可得$\frac{0+1}{2-0}$<k<1,即$\frac{1}{2}<k<1$,長度為$\frac{1}{2}$,
∴使得函數(shù)g(x)=|x-2|-kx+1有兩個不相同的零點的概率為$\frac{1}{8}$,
故選A.
點評 本題考查函數(shù)的性質(zhì),考查函數(shù)的零點,考查幾何概型,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-15,$\frac{1}{5}$] | B. | [-$\frac{5}{3}$,$\frac{9}{5}$] | C. | [-$\frac{5}{3}$,$\frac{1}{5}$] | D. | [-15,$\frac{9}{5}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,$\frac{1}{2}$] | B. | [$\frac{1}{2}$,$\frac{2}{3}$) | C. | ($\frac{2}{3}$,1] | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{(π+18)^{2}}{72}$ | B. | $\frac{\sqrt{2}π}{12}$ | C. | $\frac{(π+18)^{2}}{12}$ | D. | $\frac{(π-3\sqrt{3}+15)^{2}}{72}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=1,y=x0 | B. | y=$\sqrt{x-1}$•$\sqrt{x+1}$,y=$\sqrt{{x}^{2}-1}$ | ||
C. | y=x,y=$\root{3}{{x}^{3}}$ | D. | y=|x|,t=($\sqrt{x}$)2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com