13.已知數(shù)列{an}滿足Sn=2an-1(n∈N*),{bn}是等差數(shù)列,且b1=a1,b4=a3
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若cn=$\frac{1}{a_n}-\frac{2}{{{b_n}{b_{n+1}}}}({n∈{N^*}})$,求數(shù)列{cn}的前n項和Tn

分析 (1)利用遞推關(guān)系、等差數(shù)列與等比數(shù)列的通項公式即可得出.
(2)利用“裂項求和”方法、等比數(shù)列的求和公式即可得出.

解答 解:(1)Sn=2an-1,n≥2時,Sn-1=2an-1-1,∴an=Sn-Sn-1=2an-2an-1,即an=2an-1
當(dāng)n=1時,S1=a1=2a1-1,∴a1=1,
∴an是以1為首項,2為公比的等比數(shù)列,
∴${a_n}={2^{n-1}}$,
b1=a1=1,b4=a3=4,∴公差=$\frac{4-1}{3}$=1.
bn=1+(n-1)=n.
(2)${c_n}=\frac{1}{a_n}-\frac{2}{{{b_n}{b_{n+1}}}}={2^{1-n}}-\frac{2}{{n({n+1})}}={2^{1-n}}-2({\frac{1}{n}-\frac{1}{n+1}})$,
∴${T_n}=\frac{{1-\frac{1}{2^n}}}{{1-\frac{1}{2}}}-2({1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1}})=2-\frac{1}{{{2^{n-1}}}}-2({1-\frac{1}{n+1}})=\frac{2}{n+1}-{2^{1-n}}$.

點評 本題考查了數(shù)列遞推關(guān)系、等差數(shù)列與等比數(shù)列的通項公式與求和公式、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在Rt△ABC中,∠A=90°,AB=AC=1,點E是AB的中點,點D滿足$\overrightarrow{CD}=\frac{2}{3}\overrightarrow{CB}$,則$\overrightarrow{CE}•\overrightarrow{AD}$=$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)$f(x)=\frac{1}{2}ln(x+\frac{1}{4})$,$g(x)=ln(2x-\frac{1}{2}+t)$,若f(x)≤g(x)在區(qū)間[0,1]上恒成立,則( 。
A.實數(shù)t有最小值1B.實數(shù)t有最大值1C.實數(shù)t有最小值$\frac{1}{2}$D.實數(shù)t有最大值$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)$y=\frac{e^x}{x}$的單調(diào)減區(qū)間是(  )
A.(-∞,1]B.(1,+∞]C.(0,1]D.(-∞,0)和(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知集合A={1,2,3,4},B={1,2},則滿足條件B⊆C⊆A的集合C的個數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在平面直角坐標(biāo)系中,曲線$\left\{\begin{array}{l}x=cosα\\ y=sinα\end{array}\right.(α$是參數(shù))與曲線$\left\{\begin{array}{l}{x=tcos\frac{π}{3}}\\{y=tsin\frac{π}{3}}\end{array}\right.$(t是參數(shù))的交點的直角坐標(biāo)為$({\frac{1}{2},\frac{{\sqrt{3}}}{2}})({-\frac{1}{2},-\frac{{\sqrt{3}}}{2}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}的首項為1,數(shù)列{bn}為等比數(shù)列,且${b_n}=\frac{{{a_{n+1}}}}{a_n},{b_6}•{b_9}=2$,則a15=128.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)$f(x)=\left\{\begin{array}{l}{e^{x+2}},x≤0\\ lnx,x>0\end{array}\right.$,則f(f(-3))的值為( 。
A.${e^{\frac{1}{e}+2}}$B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lg(-x)|,x<0}\\{{x}^{2}-6x+4,x≥0}\end{array}\right.$,若關(guān)于x的方程f2(x)-bf(x)+1=0有8個不同根,則實數(shù)b的取值范圍是( 。
A.(2,$\frac{17}{4}$]B.(2,$\frac{17}{4}$]∪(-∞,-2)C.(2,8)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

同步練習(xí)冊答案