【題目】某工廠有120名工人,其年齡都在20~ 60歲之間,各年齡段人數(shù)按[20,30),[30,40),[40,50),[50,60]分成四組,其頻率分布直方圖如下圖所示.工廠為了開發(fā)新產(chǎn)品,引進了新的生產(chǎn)設備,F(xiàn)采用分層抽樣法從全廠工人中抽取一個容量為20的樣本參加新設備培訓,培訓結(jié)束后進行結(jié)業(yè)考試。已知各年齡段培訓結(jié)業(yè)考試成績優(yōu)秀的人數(shù)如下表所示:
若隨機從年齡段[20,30)和[40,50)的參加培訓工人中各抽取1人,則這兩人培訓結(jié)業(yè)考試成績恰有一人優(yōu)秀的概率為___________.
【答案】
【解析】分析:由頻率分布直方圖計算出年齡段[20,30)和[40,50)的人數(shù),各選一人得基本事件總數(shù),再分兩種情況計算恰有一個優(yōu)秀的事件個數(shù),作比即為概率.
詳解:由頻率分布直方圖可知,年齡段[20,30),[30,40),[40,50),[50,60]的人數(shù)的頻率分別為0.3,0.35,0.2,0.15,所以年齡段[20,30),[30,40),[40,50),[50,60]應抽取人數(shù)分別為6,7,4,3.
若隨機從年齡段[20,30)和[40,50)的參加培訓工人中各抽取1人,則這兩人培訓結(jié)業(yè)考試成績恰有一人優(yōu)秀的概率為.
故答案為:.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在棱長為1的正方體中,點分別是棱,的中點,是側(cè)面內(nèi)一點,若 平面,則線段長度的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)銷商第一年購買某工廠商品的單價為(單位:元),在下一年購買時,購買單價與其上年度銷售額(單位:萬元)相聯(lián)系,銷售額越多,得到的優(yōu)惠力度越大,具體情況如下表:
上一年度 銷售額/萬元 | ||||||
商品單價/元 |
為了研究該商品購買單價的情況,為此調(diào)查并整理了個經(jīng)銷商一年的銷售額,得到下面的柱狀圖.
已知某經(jīng)銷商下一年購買該商品的單價為(單位:元),且以經(jīng)銷商在各段銷售額的頻率作為概率.
(1)求的平均估計值.
(2)為了鼓勵經(jīng)銷商提高銷售額,計劃確定一個合理的年度銷售額(單位:萬元),年銷售額超過的可以獲得紅包獎勵,該工廠希望使的經(jīng)銷商獲得紅包,估計的值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某家具廠生產(chǎn)一種辦公桌,每張辦公桌的成本為100元,出廠單價為160元,該廠為鼓勵銷售商多訂購,決定一次訂購量超過100張時,每超過一張,這批訂購的全部辦公桌出廠單價降低1元.根據(jù)市場調(diào)查,銷售商一次訂購量不會超過160張.
(1)設一次訂購量為張,辦公桌的實際出廠單價為元,求關于的函數(shù)關系式;
(2)當一次性訂購量為多少時,該家具廠這次銷售辦公桌所獲得的利潤最大?其最大利潤是多少元?(該家具廠出售一張辦公桌的利潤=實際出廠單價-成本)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)="xln" x–ax2+(2a–1)x,aR.
(Ⅰ)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;
(Ⅱ)已知f(x)在x=1處取得極大值.求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,等邊三角形的中線與中位線相交于,已知是繞旋轉(zhuǎn)過程中的一個圖形,下列命題中,錯誤的是
A. 恒有⊥
B. 異面直線與不可能垂直
C. 恒有平面⊥平面
D. 動點在平面上的射影在線段上
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為慶祝中國人民解放軍建軍90周年,南昌市某校打算組織高一6個班級參加紅色旅游活動,旅游點選取了八一南昌起義紀念館,南昌新四軍軍部舊址等5個紅色旅游景點.若規(guī)定每個班級必須參加且只能游覽1個景點,每個景點至多有兩個班級游覽,則這6個班級中沒有班級游覽新四軍軍部舊址的不同游覽方法數(shù)為( )
A. 3600 B. 1080 C. 1440 D. 2520
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合P={x|x2-8x-20≤0},S={x||x-1|≤m}.
(1)若(P∪S)P,求實數(shù)m的取值范圍;
(2)是否存在實數(shù)m,使得“x∈P”是“x∈S”的充要條件?若存在,求出m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com