已知橢圓C的左、右焦點坐標(biāo)分別是(-,0),(,0),離心率是.直線y=t與橢圓C交于不同的兩點M,N,以線段MN為直徑作圓P,圓心為P.
(1)求橢圓C的方程;
(2)若圓P與x軸相切,求圓心P的坐標(biāo);
(3)設(shè)Q(x,y)是圓P上的動點,當(dāng)t變化時,求y的最大值.
(1)+y2=1  (2)(0,±)  (3)2

解:(1)因為=,且c=,
所以a=,b==1.
所以橢圓C的方程為+y2=1.
(2)由題意知P(0,t)(-1<t<1).

得x=±.
所以圓P的半徑為.
當(dāng)圓P與x軸相切時,|t|=.
解得t=±.
所以圓心P的坐標(biāo)是(0,±).
(3)由(2)知,圓P的方程為x2+(y-t)2=3(1-t2).
因為點Q(x,y)在圓P上,
所以y=t±≤t+.
設(shè)t="cos" θ,θ∈(0,π),
則t+="cos" θ+sin θ=2sin(θ+).
當(dāng)θ=,即t=,且x=0時,y取最大值2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是橢圓的兩個焦點,為坐標(biāo)原點,點在橢圓上,且,⊙是以為直徑的圓,直線與⊙相切,并且與橢圓交于不同的兩點

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng),且滿足時,求弦長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A,B分別是橢圓C1:+=1的左、右頂點,P是橢圓上異于A,B的任意一點,Q是雙曲線C2:-=1上異于A,B的任意一點,a>b>0.
(1)若P(,),Q(,1),求橢圓C1的方程;
(2)記直線AP,BP,AQ,BQ的斜率分別是k1,k2,k3,k4,求證:k1·k2+k3·k4為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)經(jīng)過點M(-2,-1),離心率為.過點M作傾斜角互補的兩條直線分別與橢圓C交于異于M的另外兩點P、Q.
(1)求橢圓C的方程;
(2)試判斷直線PQ的斜率是否為定值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知焦點在軸上的橢圓,其離心率為,則實數(shù)的值是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知橢圓C1:+=1(a>b>0)的左焦點為F1(-1,0),且點P(0,1)在C1上.
(1)求橢圓C1的方程;
(2)設(shè)直線l同時與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F1,F2是橢圓E:+=1(a>b>0)的左、右焦點,P為直線x=上一點,△F2PF1是底角為30°的等腰三角形,則E的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點P在定圓O的圓內(nèi)或圓周上,動圓C過點P與定圓O相切,則動圓C的圓心軌跡可能是(  )
A.圓或橢圓或雙曲線
B.兩條射線或圓或拋物線
C.兩條射線或圓或橢圓
D.橢圓或雙曲線或拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓mx2+y2=1的焦點在y軸上,長軸長是短軸長的3倍,則m=    .

查看答案和解析>>

同步練習(xí)冊答案