1.已知Rt△ABC,AB=3,BC=4,CA=5,P為△ABC外接圓上的一動(dòng)點(diǎn),且$\overrightarrow{AP}=x\overrightarrow{AB}+y\overrightarrow{AC},則x+y$的最大值是( 。
A.$\frac{5}{4}$B.$\frac{4}{3}$C.$\frac{{\sqrt{17}}}{6}$D.$\frac{5}{3}$

分析 以AC的中點(diǎn)為原點(diǎn),以ACx軸,建立如圖所示的平面直角坐標(biāo)系,設(shè)P的坐標(biāo)為($\frac{5}{2}$cosθ,$\frac{5}{2}$sinθ),求出點(diǎn)B的坐標(biāo),根據(jù)向量的坐標(biāo)和向量的數(shù)乘運(yùn)算得到x+y=$\frac{5}{6}$sin(θ+φ)+$\frac{1}{2}$,根據(jù)正弦函數(shù)的圖象和性質(zhì)即可求出答案

解答 解:以AC的中點(diǎn)為原點(diǎn),以ACx軸,建立如圖所示的平面直角坐標(biāo)系,
則△ABC外接圓的方程為x2+y2=2.52
設(shè)P的坐標(biāo)為($\frac{5}{2}$cosθ,$\frac{5}{2}$sinθ),
過(guò)點(diǎn)B作BD垂直x軸,
∵sinA=$\frac{4}{5}$,AB=3
∴BD=ABsinA=$\frac{12}{5}$,AD=AB•cosA=$\frac{3}{5}$×3=$\frac{9}{5}$,
∴OD=AO-AD=2.5-$\frac{9}{5}$=$\frac{7}{10}$,
∴B(-$\frac{7}{10}$,$\frac{12}{5}$),
∵A(-$\frac{5}{2}$,0),C($\frac{5}{2}$,0)
∴$\overrightarrow{AB}$=($\frac{9}{5}$,$\frac{12}{5}$),$\overrightarrow{AC}$=(5,0),$\overrightarrow{AP}$=($\frac{5}{2}$cosθ+$\frac{5}{2}$,$\frac{5}{2}$sinθ)
∵$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$
∴($\frac{5}{2}$cosθ+$\frac{5}{2}$,$\frac{5}{2}$sinθ)=x($\frac{9}{5}$,$\frac{12}{5}$)+y(5,0)=($\frac{9}{5}$x+5y,$\frac{12}{5}$x)
∴$\frac{5}{2}$cosθ+$\frac{5}{2}$=$\frac{9}{5}$x+5y,$\frac{5}{2}$sinθ=$\frac{12}{5}$x,
∴y=$\frac{1}{2}$cosθ-$\frac{3}{8}$sinθ+$\frac{1}{2}$,x=$\frac{25}{24}$sinθ,
∴x+y=$\frac{1}{2}$cosθ+$\frac{2}{3}$sinθ+$\frac{1}{2}$=$\frac{5}{6}$sin(θ+φ)+$\frac{1}{2}$,其中sinφ=$\frac{3}{5}$,cosφ=$\frac{4}{5}$,
當(dāng)sin(θ+φ)=1時(shí),x+y有最大值,最大值為$\frac{5}{6}$+$\frac{1}{2}$=$\frac{4}{3}$,
故選:B

點(diǎn)評(píng) 本題考查了向量的坐標(biāo)運(yùn)算和向量的數(shù)乘運(yùn)算和正弦函數(shù)的圖象和性質(zhì),以及直角三角形的問(wèn)題,考查了學(xué)生的分析解決問(wèn)題的能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖所示,四棱錐P-ABCD中,PC=AD=CD=$\frac{1}{2}$AB=2,AB∥CD,AD⊥CD,PC⊥
面ABCD.
(1)求證:面PBC⊥面PAC;
(2)若M,N分別為PA,PB的中點(diǎn),求三棱錐A-CMN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.給出下列兩個(gè)命題:命題p:若在邊長(zhǎng)為1的正方形ABCD內(nèi)任取一點(diǎn)M,則|MA|≤1的概率為$\frac{π}{4}$.命題q:若函數(shù)f(x)=x+$\frac{4}{x}$,(x∈[1,2)),則f(x)的最小值為4.則下列命題為真命題的是( 。
A.p∧qB.¬pC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)實(shí)數(shù)a,b,x,y滿(mǎn)足a2+b2=1,x2+y2=1則ax+by的最大值等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知A、B是圓O:x2+y2=16的兩個(gè)動(dòng)點(diǎn),|$\overrightarrow{AB}$|=4,$\overrightarrow{OC}$=$\frac{5}{3}$$\overrightarrow{OA}$-$\frac{2}{3}$$\overrightarrow{OB}$.若M是線段AB的中點(diǎn),則$\overrightarrow{OC}$•$\overrightarrow{OM}$的值為( 。
A.8+4$\sqrt{3}$B.8-4$\sqrt{3}$C.12D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.為調(diào)查高中生的數(shù)學(xué)成績(jī)與學(xué)生自主學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,某重點(diǎn)高中數(shù)學(xué)教師對(duì)新入學(xué)的45名學(xué)生進(jìn)行了跟蹤調(diào)查,其中每周自主做數(shù)學(xué)題的時(shí)間不少于15小時(shí)的有19人,余下的人中,在高三模擬考試中數(shù)學(xué)平均成績(jī)不足120分的占$\frac{8}{13}$,統(tǒng)計(jì)成績(jī)后,得到如下的2×2列聯(lián)表:
分?jǐn)?shù)大于等于120分分?jǐn)?shù)不足120分合 計(jì)
周做題時(shí)間不少于15小時(shí)15419
周做題時(shí)間不足15小時(shí)101626
合 計(jì)252045
(Ⅰ)請(qǐng)完成上面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“高中生的數(shù)學(xué)成績(jī)與學(xué)生自主學(xué)習(xí)時(shí)間有關(guān)”;
(Ⅱ)( i) 按照分層抽樣的方法,在上述樣本中,從分?jǐn)?shù)大于等于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到的不足120分且周做題時(shí)間不足15小時(shí)的人數(shù)是X,求X的分布列(概率用組合數(shù)算式表示);
( ii) 若將頻率視為概率,從全校大于等于120分的學(xué)生中隨機(jī)抽取20人,求這些人中周做題時(shí)間不少于15小時(shí)的人數(shù)的期望和方差.
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知圓A:x2+y2+2x-15=0和定點(diǎn)B(1,0),M是圓A上任意一點(diǎn),線段MB的垂直平分線交MA于點(diǎn)N,設(shè)點(diǎn)N的軌跡為C.
(Ⅰ)求C的方程;
(Ⅱ)若直線y=k(x-1)與曲線C相交于P,Q兩點(diǎn),試問(wèn):在x軸上是否存在定點(diǎn)R,使當(dāng)k變化時(shí),總有∠ORP=∠ORQ?若存在,求出點(diǎn)R的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{lnx,x>0}\\{\frac{m}{x},x<0}\end{array}}$,若f(x)-f(-x)=0有四個(gè)不同的根,則m的取值范圍是( 。
A.(0,2e)B.(0,e)C.(0,1)D.(0,$\frac{1}{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=ex[x2+(a+1)x+2a-1].
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的不等式f(x)≤ea在[a,+∞)上有解,求實(shí)數(shù)a的取值范圍;
(3)若曲線y=f(x)存在兩條互相垂直的切線,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案