已知函數(shù).
(1)求函數(shù)上的最大值和最小值;
(2)求證:當(dāng)時(shí),函數(shù)的圖像在的下方.
(1)的最小值是,最大值是;(2)證明詳見(jiàn)解析.

試題分析:(1)先求導(dǎo)函數(shù),由導(dǎo)函數(shù)的符號(hào)確定上的單調(diào)性,進(jìn)而確定函數(shù)的最值即可;(2)本題的實(shí)質(zhì)是證明在區(qū)間恒成立,然后利用導(dǎo)數(shù)研究其最大值即可.
試題解析:(1)∵,∴
時(shí),,故上是增函數(shù)
的最小值是,最大值是
(2)證明:令


當(dāng)時(shí),,而

上是減函數(shù)
,即
∴當(dāng)時(shí),函數(shù)的圖像總在的圖像的下方.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某公司承建扇環(huán)面形狀的花壇如圖所示,該扇環(huán)面花壇是由以點(diǎn)為圓心的兩個(gè)同心圓弧、弧以及兩條線段圍成的封閉圖形.花壇設(shè)計(jì)周長(zhǎng)為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米(),圓心角為弧度.

(1)求關(guān)于的函數(shù)關(guān)系式;
(2)在對(duì)花壇的邊緣進(jìn)行裝飾時(shí),已知兩條線段的裝飾費(fèi)用為4元/米,兩條弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,當(dāng)為何值時(shí),取得最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

養(yǎng)路處建造圓錐形倉(cāng)庫(kù)用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉(cāng)庫(kù)的底面直徑為,高,養(yǎng)路處擬建一個(gè)更大的圓錐形倉(cāng)庫(kù),以存放更多食鹽,現(xiàn)有兩種方案:一是新建的倉(cāng)庫(kù)的底面直徑比原來(lái)大(高不變);二是高度增加(底面直徑不變)。
(1)分別計(jì)算按這兩種方案所建的倉(cāng)庫(kù)的體積;
(2)分別計(jì)算按這兩種方案所建的倉(cāng)庫(kù)的表面積(地面無(wú)需用材料);
(3)哪個(gè)方案更經(jīng)濟(jì)些?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2013•湖北)已知函數(shù)f(x)=x(lnx﹣ax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(﹣∞,0)B.(0,C.(0,1)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)的定義域?yàn)镽,若存在常數(shù)M>0,使對(duì) 一切實(shí)數(shù)x均成 立,則稱為“倍約束函數(shù)”,現(xiàn)給出下列函數(shù):①:②:③;④  ⑤是定義在實(shí)數(shù)集R上的奇函數(shù),且
對(duì)一切均有,其中是“倍約束函數(shù)”的有(    )
A.1個(gè) B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)為實(shí)常數(shù)).
(1)若函數(shù)在區(qū)間上是增函數(shù),試用函數(shù)單調(diào)性的定義求實(shí)數(shù)的取值范圍;
(2)設(shè),若不等式有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列所給4個(gè)圖象中,與所給3件事吻合最好的順序?yàn)椋?nbsp;  )

(1)我離開(kāi)家不久,發(fā)現(xiàn)自己把作業(yè)本忘在家里了,于是立刻返回家里取了作業(yè)本再上學(xué);
(2)我騎著車(chē)一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時(shí)間;
(3)我出發(fā)后,心情輕松,緩緩行進(jìn),后來(lái)為了趕時(shí)間開(kāi)始加速。
A.(1)(2)(4)B.(4)(2)(3)C.(4)(1)(3)D.(4)(1)(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)滿足:對(duì)定義域內(nèi)的任意,都有,則函數(shù)可以是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù),則上的零點(diǎn)個(gè)數(shù)(   )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案