精英家教網 > 高中數學 > 題目詳情
某公司承建扇環(huán)面形狀的花壇如圖所示,該扇環(huán)面花壇是由以點為圓心的兩個同心圓弧、弧以及兩條線段圍成的封閉圖形.花壇設計周長為30米,其中大圓弧所在圓的半徑為10米.設小圓弧所在圓的半徑為米(),圓心角為弧度.

(1)求關于的函數關系式;
(2)在對花壇的邊緣進行裝飾時,已知兩條線段的裝飾費用為4元/米,兩條弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,當為何值時,取得最大值?
(1);(2)參考解析

試題分析:(1)由于花壇設計周長為30米,其中大圓弧所在圓的半徑為10米.設小圓弧所在圓的半徑為米(),圓心角為弧度.所以AD的弧長為,BC的弧長為.所以可得.即可得結論.
(2)由花壇兩條線段的裝飾費用為4元/米,兩條弧線部分的裝飾費用為9元/米.即可得所需費用的關系式. 花壇的面積由大扇形面積減去小的扇形面積即可,再利用基本不等式即可求得結論.
試題解析:(1)設扇環(huán)的圓心角為q,則,
所以
(2)花壇的面積為

裝飾總費用為,
所以花壇的面積與裝飾總費用的比,
,則,當且僅當t=18時取等號,
此時
答:當時,花壇的面積與裝飾總費用的比最大.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

為了尋找馬航殘骸,我國“雪龍?zhí)枴笨瓶即?014年3月26日從港口出發(fā),沿北偏東角的射線方向航行,而在港口北偏東角的方向上有一個給科考船補給物資的小島,海里,且.現指揮部需要緊急征調位于港口正東海里的處的補給船,速往小島裝上補給物資供給科考船.該船沿方向全速追趕科考船,并在處相遇.經測算當兩船運行的航線與海岸線圍成的三角形的面積最小時,這種補給方案最優(yōu).

(1)求關于的函數關系式
(2)應征調位于港口正東多少海里處的補給船只,補給方案最優(yōu)?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數.
(1)求函數上的最大值和最小值;
(2)求證:當時,函數的圖像在的下方.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

定義在[﹣1,1]上的奇函數f(x)滿足f(1)=2,且當a,b∈[﹣1,1],a+b≠0時,有
(1)試問函數f(x)的圖象上是否存在兩個不同的點A,B,使直線AB恰好與y軸垂直,若存在,求出A,B兩點的坐標;若不存在,請說明理由并加以證明.
(2)若對所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

二次函數f(x)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在區(qū)間[-1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,求實數m的取值范圍

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數的圖像與函數的圖像所有交點的橫坐標之和等于
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

某商人如果將進貨單價為8元的商品按每件10元出售時,每天可銷售100件,現在他采用提高售價,減少進貨量的辦法增加利潤.已知這種商品每件銷售價提高1元,銷售量就要減少10件,如果使得每天所賺的利潤最大,那么他將銷售價每件定為( 。
A.11元B.12元C.13元D.14元

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

對于函數,若存在區(qū)間,使得,則稱函數為“可等域函數”,區(qū)間為函數的一個“可等域區(qū)間”.給出下列4個函數:
;②; ③; ④
其中存在唯一“可等域區(qū)間”的“可等域函數”為(     )
A.①②③B.②③C.①③D.②③④

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

下列四個命題:
①方程若有一個正實根,一個負實根,則;
②函數是偶函數,但不是奇函數;
③函數的值域是,則函數的值域為;
④一條曲線和直線的公共點個數是,則的值不可能是
其中正確的有________________(寫出所有正確命題的序號).

查看答案和解析>>

同步練習冊答案